|
Frontiers of Information Technology & Electronic Engineering
ISSN 2095-9184 (print), ISSN 2095-9230 (online)
2017 Vol.18 No.11 P.1867-1873
Joint entity–relation knowledge embedding via cost-sensitive learning
Abstract: As a joint-optimization problem which simultaneously fulfills two different but correlated embedding tasks (i.e., entity embedding and relation embedding), knowledge embedding problem is solved in a joint embedding scheme. In this embedding scheme, we design a joint compatibility scoring function to quantitatively evaluate the relational facts with respect to entities and relations, and further incorporate the scoring function into the max-margin structure learning process that explicitly learns the embedding vectors of entities and relations using the context information of the knowledge base. By optimizing the joint problem, our design is capable of effectively capturing the intrinsic topological structures in the learned embedding spaces. Experimental results demonstrate the effectiveness of our embedding scheme in characterizing the semantic correlations among different relation units, and in relation prediction for knowledge inference.
Key words: Knowledge embedding, Joint embedding, Cost-sensitive learning
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/FITEE.1601255
CLC number:
TP393
Download Full Text:
Downloaded:
2538
Clicked:
7648
Cited:
0
On-line Access:
2024-08-27
Received:
2023-10-17
Revision Accepted:
2024-05-08
Crosschecked:
2017-11-22