Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

A virtual 3D interactive painting method for Chinese calligraphy and painting based on real-time force feedback technology

Abstract: A novel 3D interactive painting method for Chinese calligraphy and painting based on force feedback technology is proposed. The relationship between the force exerted on the brush and the resulting brush deformation is analyzed and a spring-mass model is used to build a model of the 3D Chinese brush. The 2D brush footprint between the brush and the plane of the paper or object is calculated according to the deformation of the 3D brush when force is exerted on the 3D brush. Then the 3D brush footprint is obtained by projecting the 2D brush footprint onto the surface of the 3D object in real time, and a complete 3D brushstroke is obtained by superimposing 3D brush footprints along the painting direction. The proposed method has been successfully applied in a virtual 3D interactive drawing system based on force feedback technology. In this system, users can paint 3D brushstrokes in real time with a Phantom Desktop haptic device, which can effectively serve as a virtual reality interface to the simulated painting environment for users.

Key words: 3D brush model; 3D brushstroke; 3D interactive painting; Real-time force feedback technology

Chinese Summary  <26> 基于实时力反馈技术的中国书画虚拟三维交互绘制方法

概要:本文提出了一种新的基于实时力反馈技术的中国书画三维交互绘制方法。本文通过分析毛笔受力与变形的关系,基于一种弹簧振子模型构建了三维毛笔模型。根据毛笔受力产生的变形计算得到毛笔在绘制平面上形成的2D笔触,并将其实时映射到3D物体表面形成3D笔触,沿着绘制方向叠加3D笔触形成3D笔道。本方法已成功应用于基于实时力反馈技术的虚拟三维交互绘制系统,用户可以通过Phantom Desktop力反馈设备实时绘制三维笔道,从而实现对三维交互绘制过程的有效仿真。

关键词组:三维毛笔模型;三维笔道;三维交互绘制;实时力反馈技术


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.1601283

CLC number:

TP391.9

Download Full Text:

Click Here

Downloaded:

2449

Download summary:

<Click Here> 

Downloaded:

1747

Clicked:

7695

Cited:

0

On-line Access:

2024-08-27

Received:

2023-10-17

Revision Accepted:

2024-05-08

Crosschecked:

2017-11-20

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE