|
Frontiers of Information Technology & Electronic Engineering
ISSN 2095-9184 (print), ISSN 2095-9230 (online)
2017 Vol.18 No.12 P.2058-2069
Ultra-wideband FMCW ISAR imaging with a large rotation angle based on block-sparse recovery
Abstract: Ultra-wideband frequency modulated continuous wave (FMCW) radar has the ability to achieve high-range resolution. Combined with the inverse synthetic aperture technique, high azimuth resolution can be realized under a large rotation angle. However, the range-azimuth coupling problem seriously restricts the inverse synthetic aperture radar (ISAR) imaging performance. Based on the turntable model, traditional match-filter-based, range Doppler algorithms (RDAs) and the back projection algorithm (BPA) are investigated. To eliminate the sidelobe effects of traditional algorithms, compressed sensing (CS) is preferred. Considering the block structure of a signal at high resolution, a block-sparsity adaptive matching pursuit algorithm (BSAMP) is proposed. By matching pursuit and backtracking, a signal with unknown sparsity can be recovered accurately by updating the support set iteratively. Finally, several experiments are conducted. In comparison with other algorithms, the results from processing the simulation data, some simple targets, and a complex target indicate the effectiveness and superiority of the proposed algorithm.
Key words: Frequency modulated continuous wave (FMCW); Inverse synthetic aperture radar (ISAR); Match-filter-based algorithm; Compressed sensing; Block sparsity
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/FITEE.1601310
CLC number:
TN4
Download Full Text:
Downloaded:
4151
Clicked:
7841
Cited:
0
On-line Access:
2024-08-27
Received:
2023-10-17
Revision Accepted:
2024-05-08
Crosschecked:
2017-12-20