Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

Accurate two-degree-of-freedom discrete-time current controller design for PMSM using complex vectors

Abstract: Properties of the current controller are essential for permanent magnet synchronous machine (PMSM) drives, but the conventional continuous-time current controller cannot fully decouple the cross-coupling terms when applied in the digital processor. Its performance is related closely to the rotational speed. To improve the performance of the current loop, the direct design method in the discrete-time domain is adopted using the accurate discrete-time complex vector model. An integrated accurate hold-equivalent discrete model for PMSM is derived considering the difference between the output of the voltage source inverter and the back electro-motive force. Then an accurate two-degree-of-freedom (2DOF) current controller with a third-order closed-loop transfer function is designed. The 2DOF controller has more freedom in pole placement, and two schemes with a different cancelled pole-zero pair are investigated. Analysis is conducted by the robust root locus method via the complex vector root locus and sensitivity functions, showing properties in disturbance rejection and sensitivity to parameter variation of two schemes. Both schemes have their own advantages. Finally, the dynamic performance and flexibility of the proposed current controller is verified on a 2.5-kW PMSM test bench.

Key words: Permanent magnet synchronous machine (PMSM)]>

Chinese Summary  <27> 二自由度精确解耦离散复矢量永磁同步电机电流控制器

摘要:电流控制器性能对永磁同步电机驱动的影响至关重要,然而,在数字处理器中采用传统的连续域电流控制器不能使系统达到完全解耦,这使得电流控制器性能会随电机转速而变化。为提高电流控制器性能,提出一种利用精确离散复矢量模型在离散域直接设计电流控制器的方法。首先,针对变流器输出电压和电机反电势的不同特性推导出永磁同步电机的精确离散模型。然后,根据该模型设计出三阶形式精确解耦二自由度电流控制器,该控制器在配置系统闭环极点时自由度更高。针对两种不同的对消零极点位置选取方案,借助复矢量根轨迹和灵敏度函数对其抗干扰性和参数敏感度进行考察,结果表明两种方案各有优势。最后,在2.5kW永磁同步电机实验台上验证了所提电流控制器设计方法的有效性。

关键词组:永磁同步电机;离散电流控制器;复矢量


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.1601390

CLC number:

TM351

Download Full Text:

Click Here

Downloaded:

3193

Download summary:

<Click Here> 

Downloaded:

1860

Clicked:

6985

Cited:

0

On-line Access:

2024-08-27

Received:

2023-10-17

Revision Accepted:

2024-05-08

Crosschecked:

2022-04-22

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE