Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

Battle damage assessment based on an improved Kullback-Leibler divergence sparse autoencoder

Abstract: The nodes number of the hidden layer in a deep learning network is quite difficult to determine with traditional methods. To solve this problem, an improved Kullback-Leibler divergence sparse autoencoder (KL-SAE) is proposed in this paper, which can be applied to battle damage assessment (BDA). This method can select automatically the hidden layer feature which contributes most to data reconstruction, and abandon the hidden layer feature which contributes least. Therefore, the structure of the network can be modified. In addition, the method can select automatically hidden layer feature without loss of the network prediction accuracy and increase the computation speed. Experiments on University of California-Irvine (UCI) data sets and BDA for battle damage data demonstrate that the method outperforms other reference data-driven methods. The following results can be found from this paper. First, the improved KL-SAE regression network can guarantee the prediction accuracy and increase the speed of training networks and prediction. Second, the proposed network can select automatically hidden layer effective feature and modify the structure of the network by optimizing the nodes number of the hidden layer.

Key words: Battle damage assessment; Improved Kullback-Leibler divergence sparse autoencoder; Structural optimization; Feature selection

Chinese Summary  <25> 基于改进Kullback-Leibler散度稀疏自动编码机的战损评估

概要:为解决深度学习网络中隐藏层节点数难以确定的问题,文中提出一种改进的KL(Kullback-Leibler)散度稀疏自动编码机,并将该方法应用到战斗损伤评估中。该方法能够自动筛选出对数据重建贡献大的隐层特征,舍弃贡献小的隐层特征,从而优化网络结构。在网络预测精度不受影响的前提下,该方法自动筛选隐层特征,提升了计算速度。基于UCI(University of California, Irvine)数据集和BDA(battle damage assessment)战争破坏数据的实验表明,该方法优于其他数据驱动的方法。改进的KL稀疏自动编码机回归网络在保证预测精度的前提下,能提升网络的训练和预测速度,并自动筛选隐层有效特征,优化隐层节点数,优化网络结构。

关键词组:战场损伤评估;改进的KL散度稀疏自动编码机;结构优化;特征选择


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.1601395

CLC number:

TP391.4; E917

Download Full Text:

Click Here

Downloaded:

2425

Download summary:

<Click Here> 

Downloaded:

1787

Clicked:

6714

Cited:

0

On-line Access:

2024-08-27

Received:

2023-10-17

Revision Accepted:

2024-05-08

Crosschecked:

2017-12-20

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE