Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

Using improved particle swarm optimization to tune PID controllers in cooperative collision avoidance systems

Abstract: The introduction of proportional-integral-derivative (PID) controllers into cooperative collision avoidance systems (CCASs) has been hindered by difficulties in their optimization and by a lack of study of their effects on vehicle driving stability, comfort, and fuel economy. In this paper, we propose a method to optimize PID controllers using an improved particle swarm optimization (PSO) algorithm, and to better manipulate cooperative collision avoidance with other vehicles. First, we use PRESCAN and MATLAB/Simulink to conduct a united simulation, which constructs a CCAS composed of a PID controller, maneuver strategy judging modules, and a path planning module. Then we apply the improved PSO algorithm to optimize the PID controller based on the dynamic vehicle data obtained. Finally, we perform a simulation test of performance before and after the optimization of the PID controller, in which vehicles equipped with a CCAS undertake deceleration driving and steering under the two states of low speed (≤50 km/h) and high speed (≥100 km/h) cruising. The results show that the PID controller optimized using the proposed method can achieve not only the basic functions of a CCAS, but also improvements in vehicle dynamic stability, riding comfort, and fuel economy.

Key words: Cooperative collision avoidance system (CCAS); Improved particle swarm optimization (PSO); PID controller; Vehicle comfort; Fuel economy

Chinese Summary  <22> 基于改进粒子群算法优化的PID控制器在协同碰撞避免系统中的应用

概要:为解决将PID控制器引入协同碰撞避免(cooperative collision avoidance system, CCAS)的研究中存在的不能合理优化PID控制器,以及对车辆行驶稳定性、舒适性及燃油经济性研究不足的问题,本文提出使用改进的粒子群优化算法(particle swarm optimization, PSO)优化PID控制器的方法,来实现CCAS对车辆更好的操控的目标。首先,本文使用PRESCAN和MATLAB/Simulink进行联合仿真,构建了由PID控制器,机动策略判断模块组成的CCAS。其次,本文使用改进的粒子群算法,依据获得的汽车动力学数据,对PID控制器进行了优化。最后,本文模拟了配备CCAS的车辆在其PID控制器经过优化前后,在低速(≤50 km/h)和高速(≥100 km/h)两种巡航状态下,进行减速行驶、减速转向工况的测试。结果表明,经过本文方法优化的PID控制器,不仅可使CCAS实现基本功能,还可实现车辆动态稳定性,行驶舒适性和燃油经济性的改善。

关键词组:协同碰撞避免系统;改进的粒子群算法;PID控制器;行驶舒适性;燃油经济性


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.1601427

CLC number:

TP39

Download Full Text:

Click Here

Downloaded:

1986

Download summary:

<Click Here> 

Downloaded:

1882

Clicked:

6086

Cited:

0

On-line Access:

2017-10-25

Received:

2016-07-20

Revision Accepted:

2017-01-23

Crosschecked:

2017-09-06

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE