Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

Versionized process based on non-volatile random-access memory for fine-grained fault tolerance

Abstract: Non-volatile random-access memory (NVRAM) technology is maturing rapidly and its byte-persistence feature allows the design of new and efficient fault tolerance mechanisms. In this paper we propose the versionized process (VerP), a new process model based on NVRAM that is natively non-volatile and fault tolerant. We introduce an intermediate software layer that allows us to run a process directly on NVRAM and to put all the process states into NVRAM, and then propose a mechanism to versionize all the process data. Each piece of the process data is given a special version number, which increases with the modification of that piece of data. The version number can effectively help us trace the modification of any data and recover it to a consistent state after a system crash. Compared with traditional checkpoint methods, our work can achieve fine-grained fault tolerance at very little cost.

Key words: Non-volatile memory, Byte-persistence, Versionized process, Version number


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.1601477

CLC number:

TP316

Download Full Text:

Click Here

Downloaded:

2983

Download summary:

<Click Here> 

Downloaded:

1761

Clicked:

7553

Cited:

0

On-line Access:

2024-08-27

Received:

2023-10-17

Revision Accepted:

2024-05-08

Crosschecked:

2018-02-15

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ 2025 Journal of Zhejiang University-SCIENCE