|
Frontiers of Information Technology & Electronic Engineering
ISSN 2095-9184 (print), ISSN 2095-9230 (online)
2017 Vol.18 No.11 P.1705-1719
An optimized grey wolf optimizer based on a mutation operator and eliminating-reconstructing mechanism and its application
Abstract: Due to its simplicity and ease of use, the standard grey wolf optimizer (GWO) is attracting much attention. However, due to its imperfect search structure and possible risk of being trapped in local optima, its application has been limited. To perfect the performance of the algorithm, an optimized GWO is proposed based on a mutation operator and eliminating-reconstructing mechanism (MR-GWO). By analyzing GWO, it is found that it conducts search with only three leading wolves at the core, and balances the exploration and exploitation abilities by adjusting only the parameter a, which means the wolves lose some diversity to some extent. Therefore, a mutation operator is introduced to facilitate better searching wolves, and an eliminating-reconstructing mechanism is used for the poor search wolves, which not only effectively expands the stochastic search, but also accelerates its convergence, and these two operations complement each other well. To verify its validity, MR-GWO is applied to the global optimization experiment of 13 standard continuous functions and a radial basis function (RBF) network approximation experiment. Through a comparison with other algorithms, it is proven that MR-GWO has a strong advantage.
The online version of this article contains electronic supplementary materials, which are available to authorized users.
Key words: Swarm intelligence; Grey wolf optimizer; Optimization; Radial basis function network
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/FITEE.1601555
CLC number:
TP273+.1
Download Full Text:
Downloaded:
2588
Download summary:
<Click Here>Downloaded:
1860Clicked:
6638
Cited:
0
On-line Access:
2024-08-27
Received:
2023-10-17
Revision Accepted:
2024-05-08
Crosschecked:
2017-11-26