Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

Compressed sensing-based structured joint channel estimation in a multi-user massive MIMO system

Abstract: Acquisition of accurate channel state information (CSI) at transmitters results in a huge pilot overhead in massive multiple input multiple output (MIMO) systems due to the large number of antennas in the base station (BS). To reduce the overwhelming pilot overhead in such systems, a structured joint channel estimation scheme employing compressed sensing (CS) theory is proposed. Specifically, the channel sparsity in the angular domain due to the practical scattering environment is analyzed, where common sparsity and individual sparsity structures among geographically neighboring users exist in multi-user massive MIMO systems. Then, by equipping each user with multiple antennas, the pilot overhead can be alleviated in the framework of CS and the channel estimation quality can be improved. Moreover, a structured joint matching pursuit (SJMP) algorithm at the BS is proposed to jointly estimate the channel of users with reduced pilot overhead. Furthermore, the probability upper bound of common support recovery and the upper bound of channel estimation quality using the proposed SJMP algorithm are derived. Simulation results demonstrate that the proposed SJMP algorithm can achieve a higher system performance than those of existing algorithms in terms of pilot overhead and achievable rate.

Key words: Compressed sensing; Multi-user massive multiple input multiple output (MIMO); Frequency-division duplexing; Structured joint channel estimation; Pilot overhead reduction

Chinese Summary  <26> 多用户大规模MIMO系统中基于压缩感知的结构化联合信道估计

概要:由于在基站处部署了大量天线,因而在大规模MIMO(multiple input multiple output)系统中发射机端获取信道状态信息需要大量的导频开销。为降低该系统所消耗的导频资源,本文基于压缩感知技术,提出了一种结构化联合信道估计的方法。首先分析了实际散射环境造成的角度域信道稀疏性,其中大规模MIMO系统中地理位置临近用户的信道矩阵存在共有稀疏结构和独立稀疏结构。同时,在压缩感知的框架下,用户配备多根天线能够进一步缓解导频开销的问题并能够提高信道估计的质量。在此基础上,本文提出了一种结构化联合信道估计算法,该算法能够以低导频开销联合估计多个用户的信道状态信息。此外,提供了该算法的共有支撑集恢复的概率上界和信道估计质量的上界。仿真结果表明该结构化联合信道估计算法能提供比现有算法更低的导频开销和更高的系统吞吐量。

关键词组:压缩感知;多用户大规模MIMO;频分双工;结构化联合信道估计;导频开销降低


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.1601635

CLC number:

TN911.5

Download Full Text:

Click Here

Downloaded:

2821

Download summary:

<Click Here> 

Downloaded:

2066

Clicked:

9341

Cited:

0

On-line Access:

2024-08-27

Received:

2023-10-17

Revision Accepted:

2024-05-08

Crosschecked:

2017-12-20

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE