Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

A new item-based deep network structure using a restricted Boltzmann machine for collaborative filtering

Abstract: The collaborative filtering (CF) technique has been widely used recently in recommendation systems. It needs historical data to give predictions. However, the data sparsity problem still exists. We propose a new item-based restricted Boltzmann machine (RBM) approach for CF and use the deep multilayer RBM network structure, which alleviates the data sparsity problem and has excellent ability to extract features. Each item is treated as a single RBM, and different items share the same weights and biases. The parameters are learned layer by layer in the deep network. The batch gradient descent algorithm with minibatch is used to increase the convergence speed. The new feature vector discovered by the multilayer RBM network structure is very effective in predicting a rating and achieves a better result. Experimental results on the data set of MovieLens show that the item-based multi-layer RBM approach achieves the best performance, with a mean absolute error of 0.6424 and a root-mean-square error of 0.7843.

Key words: Restricted Boltzmann machine; Deep network structure; Collaborative filtering; Recommendation system

Chinese Summary  <29> 一种基于受限玻尔兹曼机深度网络结构的协同过滤方法

概要:协同过滤推荐算法利用历史数据进行预测推荐,在电子商务领域得到了广泛的应用,同时,数据稀疏问题依然存在。本文提出一种基于项目的受限玻尔兹曼机协同过滤算法,并采用了深度多层网络结构,有效缓解了数据稀疏问题,获取了更加有效的特征。将项目当作单独的受限玻尔兹曼机进行训练,不同的项目具有相同的权重值和偏置,在多层网络结构中,参数逐层被学习,采用带minibatch的批量梯度下降(Batch gradient descent, BGD)算法加快收敛速度,由多层玻尔兹曼机结构的网络学习到的新的特征向量在评分预测中具有更优的能力。在Movielens数据集上的实验结果表明,采用该方法的系统性能显著优于基于用户的受限玻尔兹曼机协同过滤方法,MAE与RMSE最优值分别达到了0.6424和0.7843。

关键词组:受限玻尔兹曼机;深层网络结构;协同过滤;推荐系统


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.1601732

CLC number:

TP391

Download Full Text:

Click Here

Downloaded:

2361

Download summary:

<Click Here> 

Downloaded:

1938

Clicked:

6330

Cited:

0

On-line Access:

2024-08-27

Received:

2023-10-17

Revision Accepted:

2024-05-08

Crosschecked:

2017-04-27

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE