Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

Stochastic extra-gradient based alternating direction methods for graph-guided regularized minimization

Abstract: In this study, we propose and compare stochastic variants of the extra-gradient alternating direction method, named the stochastic extra-gradient alternating direction method with Lagrangian function (SEGL) and the stochastic extra-gradient alternating direction method with augmented Lagrangian function (SEGAL), to minimize the graph-guided optimization problems, which are composited with two convex objective functions in large scale. A number of important applications in machine learning follow the graph-guided optimization formulation, such as linear regression, logistic regression, Lasso, structured extensions of Lasso, and structured regularized logistic regression. We conduct experiments on fused logistic regression and graph-guided regularized regression. Experimental results on several genres of datasets demonstrate that the proposed algorithm outperforms other competing algorithms, and SEGAL has better performance than SEGL in practical use.

Key words: Stochastic optimization, Graph-guided minimization, Extra-gradient method, Fused logistic regression, Graph-guided regularized logistic regression

Chinese Summary  <29> 图引导正则最小化的随机超梯度的交替方向方法

概要:提出并比较额外梯度交替方向的几种随机变体方法,称为带拉格朗日函数(SEGL)的随机超梯度交替方向法和带增广拉格朗日函数(SEGAL)的随机超梯度交替方向法。这些方法由两个大规模凸目标函数组成,可最小化图形引导的优化问题。机器学习中一些重要应用遵循图导引优化公式等作为线性回归、逻辑回归、Lasso结构化扩展以及结构化正则化逻辑回归的原则。通过融合逻辑回归和图形引导正则化回归,在几类数据集上进行了试验。试验结果表明所提算法优于其他竞争算法,且在实际应用中,SEGAL比SEGL性能更好。

关键词组:随机优化;图形引导最小化;超梯度法;融合逻辑回归;图导向正则化逻辑回归


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.1601771

CLC number:

TP311

Download Full Text:

Click Here

Downloaded:

2522

Download summary:

<Click Here> 

Downloaded:

1754

Clicked:

8772

Cited:

0

On-line Access:

2024-08-27

Received:

2023-10-17

Revision Accepted:

2024-05-08

Crosschecked:

2018-06-07

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE