Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

Cross-lingual implicit discourse relation recognition with co-training

Abstract: A lack of labeled corpora obstructs the research progress on implicit discourse relation recognition (DRR) for Chinese, while there are some available discourse corpora in other languages, such as English. In this paper, we propose a cross-lingual implicit DRR framework that exploits an available English corpus for the Chinese DRR task. We use machine translation to generate Chinese instances from a labeled English discourse corpus. In this way, each instance has two independent views: Chinese and English views. Then we train two classifiers in Chinese and English in a co-training way, which exploits unlabeled Chinese data to implement better implicit DRR for Chinese. Experimental results demonstrate the effectiveness of our method.

Key words: Cross-lingual, Implicit discourse relation recognition, Co-training

Chinese Summary  <26> 基于协同学习的跨语言隐式篇章关系识别

摘要:标注语料库的缺乏阻碍了中文隐式篇章关系识别研究的进展,而在其他语言(如英语)中存在一些可用的篇章关系语料库。提出一个跨语言的隐式篇章关系识别框架,该框架可利用英语语料库完成中文隐式篇章关系识别任务。使用机器翻译从带标签的英语篇章关系语料库生成中文实例。基于该方法,每个实例都有两个独立视角:中文和英文。然后,利用联合训练方式,分别基于中文和英文视角学习两个分类器,同时利用无标签中文数据帮助完成中文隐式篇章关系识别。实验结果证明该方法有效。

关键词组:跨语言;隐式篇章关系;协同训练


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.1601865

CLC number:

TP391.1

Download Full Text:

Click Here

Downloaded:

2330

Download summary:

<Click Here> 

Downloaded:

1620

Clicked:

6813

Cited:

0

On-line Access:

2024-08-27

Received:

2023-10-17

Revision Accepted:

2024-05-08

Crosschecked:

2018-05-08

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE