Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

Improved three-vector based dead-beat model predictive direct power control strategy for grid-connected inverters

Abstract: Since only one inverter voltage vector is applied during each duty cycle, traditional model predictive direct power control (MPDPC) for grid-connected inverters (GCIs) results in serious harmonics in current and power. Moreover, a high sampling frequency is needed to ensure satisfactory steady-state performance, which is contradictory to its long execution time due to the iterative prediction calculations. To solve these problems, a novel dead-beat MPDPC strategy is proposed, using two active inverter voltage vectors and one zero inverter voltage vector during each duty cycle. Adoption of three inverter vectors ensures a constant switching frequency. Thus, smooth steady-state performance of both current and power can be obtained. Unlike the traditional three-vector based MPDPC strategy, the proposed three vectors are selected based on the power errors rather than the sector where the grid voltage vector is located, which ensures that the duration times of the selected vectors are positive all the time. Iterative calculations of the cost function in traditional predictive control are also removed, which makes the proposed strategy easy to implement on digital signal processors (DSPs) for industrial applications. Results of experiments based on a 1 kW inverter setup validate the feasibility of the proposed three-vector based dead-beat MPDPC strategy.

Key words: Grid-connected inverter, Model predictive control, Direct power control, Three vectors, Constant switching frequency, Power errors

Chinese Summary  <17>  用于并网逆变器的改进三矢量无差拍模型预测直接功率控制策略

摘要:用于并网逆变器的传统模型预测直接功率控制,在每个控制周期只使用一个逆变器电压矢量,导致并网电流和功率出现大量谐波分量,降低电能质量。为提高稳态性能,预测控制需要很高的采样频率,同时由于计算复杂,预测算法需要较长执行时间,二者存在矛盾。为解决这个问题,提出一种新的无差拍模型预测直接功率控制策略,在每个控制周期使用2个有效电压矢量和1个零电压矢量。采用三矢量策略保证开关频率恒定,提高电流和功率质量。不同于传统三矢量模型预测直接功率控制策略,该方法根据功率误差而非电网电压矢量位置选择三个矢量,保证矢量计算时间始终为正。同时,无需迭代计算,有利于在数字信号处理芯片上执行算法。最后,搭建1 kW逆变器实验平台,验证了该方法的有效性。

关键词组:并网逆变器;模型预测控制;直接功率控制;三矢量;恒定开关频率;功率误差


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.1601874

CLC number:

TM464

Download Full Text:

Click Here

Downloaded:

2467

Download summary:

<Click Here> 

Downloaded:

1723

Clicked:

6557

Cited:

0

On-line Access:

2018-12-14

Received:

2016-12-29

Revision Accepted:

2017-04-25

Crosschecked:

2018-11-26

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE