Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

A new constrained maximum margin approach to discriminative learning of Bayesian classifiers

Abstract: We propose a novel discriminative learning approach for Bayesian pattern classification, called ‘constrained maximum margin (CMM)’. We define the margin between two classes as the difference between the minimum decision value for positive samples and the maximum decision value for negative samples. The learning problem is to maximize the margin under the constraint that each training pattern is classified correctly. This nonlinear programming problem is solved using the sequential unconstrained minimization technique. We applied the proposed CMM approach to learn Bayesian classifiers based on Gaussian mixture models, and conducted the experiments on 10 UCI datasets. The performance of our approach was compared with those of the expectation-maximization algorithm, the support vector machine, and other state-of-the-art approaches. The experimental results demonstrated the effectiveness of our approach.

Key words: Discriminative learning, Statistical modeling, Bayesian pattern classifiers, Gaussian mixture models, UCI datasets

Chinese Summary  <27> 基于带约束最大间隔的贝叶斯分类器判别学习方法

摘要:提出一种新的面向贝叶斯模式分类的判别学习方法,称作"带约束的最大间隔(CMM)方法"。通过计算正样本最小决策值和负样本最大决策值的差异,定义类别之间的类别间隔。基于该类别间隔和正确分类的约束,将间隔函数学习问题转化为最大化类别间隔问题。利用序列无约束最小化技术解决该非线性规划问题。运用CMM方法得到基于高斯混合模型的贝叶斯分类器,并在10个UCI数据集上进行实验。结果表明,利用CMM方法得到的分类器分类性能,明显优于代表性的生成式学习方法期望最大化(EM)和判别式学习方法支持向量机(SVM),并且在多个数据集上取得了相比之前最优结果更好的效果。分类实验和分类器对比实验证明,CMM方法有效,具有一定应用前景。

关键词组:判别学习;统计建模;贝叶斯分类器;高斯混合模型;UCI数据集


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.1700007

CLC number:

TP391

Download Full Text:

Click Here

Downloaded:

2340

Download summary:

<Click Here> 

Downloaded:

1727

Clicked:

8250

Cited:

0

On-line Access:

2024-08-27

Received:

2023-10-17

Revision Accepted:

2024-05-08

Crosschecked:

2018-05-10

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE