Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

Characteristic of the equivalent impedance for an m×n RLC network with an arbitrary boundary

Abstract: Considerable progress has been made recently in the development of techniques to determine exactly two-point resistances in networks of various topologies. In particular, a general resistance formula of a non-regular m×n resistor network with an arbitrary boundary is determined by the recursion-transform (RT) method. However, research on the complex impedance network is more difficult than that on the resistor network, and it is a problem worthy of study since the equivalent impedance has many different properties from equivalent resistance. In this study, the equivalent impedance of a non-regular m×n RLC network with an arbitrary boundary is studied based on the resistance formula, and the oscillation characteristics and resonance properties of the equivalent impedance are discovered. In the RLC network, it is found that our formula leads to the occurrence of resonances at the boundary condition holding a series of specific values with an external alternating current source. This curious result suggests the possibility of practical applications of our formula to resonant circuits.

Key words: RLC network; Resonance properties; Oscillation characteristics; Amplitude-frequency

Chinese Summary  <19> 含有任意边界的m×n阶RLC网络的等效复阻抗特性

概要:现阶段,精确地计算拓扑网络中任意两节点间等效电阻的技术已经取得较大进展,特别是利用递推-变换(recursion-transform, RT)方法确定含有任意边界的非规则m×n电阻网络的一般等效电阻公式。然而,等效阻抗具有不同于等效电阻的性质,复杂阻抗网络的研究比电阻网络研究困难得多。基于电阻公式,本文研究了含有任意阻抗边界的非规则m×n阶RLC网络的等效复阻抗问题,并发现等效复阻抗的振荡特性和谐振特性。在RLC网络中,当边界阻抗取得一系列特殊值时,复阻抗公式与外部交流电产生共振。结果表明,该公式可以应用到谐振电路中。

关键词组:RLC网络;谐振性质;振荡特性;幅频特性


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.1700037

CLC number:

O441.1; TN711.3

Download Full Text:

Click Here

Downloaded:

2075

Download summary:

<Click Here> 

Downloaded:

1427

Clicked:

5480

Cited:

0

On-line Access:

2018-02-06

Received:

2017-01-12

Revision Accepted:

2017-05-22

Crosschecked:

2017-12-17

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE