Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

Multi-user rate and power analysis in a cognitive radio network with massive multi-input multi-output

Abstract: This paper discusses transmission performance and power allocation strategies in an underlay cognitive radio (CR) network that contains relay and massive multi-input multi-output (MIMO). The downlink transmission performance of a relay-aided massive MIMO network without CR is derived. By using the power distribution criteria, the kth user’s asymptotic signal to interference and noise ratio (SINR) is independent of fast fading. When the ratio between the base station (BS) antennas and the relay antennas becomes large enough, the transmission performance of the whole system is independent of BS-to-relay channel parameters and relates only to the relay-to-users stage. Then cognitive transmission performances of primary users (PUs) and secondary users (SUs) in an underlay CR network with massive MIMO are derived under perfect and imperfect channel state information (CSI), including the end-to-end SINR and achievable sum rate. When the numbers of primary base station (PBS) antennas, secondary base station (SBS) antennas, and relay antennas become infinite, the asymptotic SINR of the kth PU and SU is independent of fast fading. The interference between the primary network and secondary network can be canceled asymptotically. Transmission performance does not include the interference temperature. The secondary network can use its peak power to transmit signals without causing any interference to the primary network. Interestingly, when the antenna ratio becomes large enough, the asymptotic sum rate equals half of the rate of a single-hop single-antenna K-user system without fast fading. Next, the PUs’ utility function is defined. The optimal relay power is derived to maximize the utility function. The numerical results verify our analysis. The relationships between the transmission rate and the antenna number, relay power, and antenna ratio are simulated. We show that the massive MIMO with linear pre-coding can mitigate asymptotically the interference in a multi-user underlay CR network. The primary and secondary networks can operate independently.

Key words: Massive multi-input multi-output, Cognitive radio, Relay network, Transmission rate, Power analysis

Chinese Summary  <27> 大规模天线多入多出认知无线网络中的多用户传输速率和能量分析

摘要:讨论了在包含中继和大规模多入多出天线下的认知无线网络传输性能和能量分配问题。首先得到了在不考虑认知情况下的中继辅助大规模天线网络的下行传输性能,运用功率分配准则,第k个用户的渐近信干噪比与快衰落无关,当基站天线数和中继天线数的比值趋于无穷大时,整个传输过程的传输性能只与从中继到用户侧的传输有关,而与另外一侧的传输无关。接着给出了在完美和非完美信道情况下的认知大规模多入多出天线中继网络性能的闭式表达式。当主用户基站、次级用户基站、中继基站的天线数目趋于无穷大时,传输性能与快衰落无关,主、次网络之间的干扰能被完全消除,次级网络传输性能与干扰温度无关,次级网络可用峰值功率进行传输而不对主用户网络产生干扰。定义了主用户网络的效用函数,通过凸优化分析得到最佳中继发射功率。系统仿真验证了该结论。通过仿真,得到了系统传输速率与天线数目、中继功率、天线数目比值的关系。在多用户认知无线网络中,运用大规模多入多出天线的线性预编码方式能够极大减少干扰,提高传输效率,主用户网络和次级用户网络可以独立传输。

关键词组:大规模多入多出;认知无线电;中继网络;传输速率;功率分析


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.1700081

CLC number:

TN92

Download Full Text:

Click Here

Downloaded:

2367

Download summary:

<Click Here> 

Downloaded:

1822

Clicked:

8647

Cited:

0

On-line Access:

2024-08-27

Received:

2023-10-17

Revision Accepted:

2024-05-08

Crosschecked:

2018-05-11

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE