Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

Underwater docking of an under-actuated autonomous underwater vehicle: system design and control implementation

Abstract: Underwater docking greatly facilitates and extends operation of an autonomous underwater vehicle (AUV) without the support of a surface vessel. Robust and accurate control is critically important for docking an AUV into a small underwater funnel- type dock station. In this paper, a docking system with an under-actuated AUV is presented, with special attention paid to control algorithm design and implementation. For an under-actuated AUV, the cross-track error can be controlled only via vehicle heading modulation, so both the cross-track error and heading error have to be constrained to achieve successful docking operations, while the control problem can be even more complicated in practical scenarios with the presence of unknown ocean currents. To cope with the above issues, a control scheme of a three-hierarchy structure of control loops is developed, which has been embedded with online current estimator/compensator and effective control parameter tuning. The current estimator can evaluate both horizontal and vertical current velocity components, based only on the measurement of AUV’s velocity relative to the ground; in contrast, most existing methods use the measurements of both AUV’s velocities respectively relative to the ground and the water column. In addition to numerical simulation, the proposed docking scheme is fully implemented in a prototype AUV using MOOS-IvP architecture. Simulation results show that the current estimator/compensator works well even in the presence of lateral current disturbance. Finally, a series of sea trials are conducted to validate the current estimator/compensator and the whole docking system. The sea trial results show that our control methods can drive the AUV into the dock station effectively and robustly.

Key words: Autonomous underwater vehicle (AUV), Docking systems, Current estimator, Current compensation, Docking control

Chinese Summary  <32> 欠驱动自主水下航行器水下接驳:系统设计与控制实现

概要:水下接驳系统可以极大地扩展自主水下航行器(AUV)的工作范围,而无需水面舰船的支持。稳定和精确的控制对于将AUV对接到小型水下接驳站至关重要。本文介绍了一种欠驱动水下航行器对接系统,重点介绍了控制算法的设计及实现。对于欠驱动AUV,侧向偏差只能通过调整AUV的航向来控制,AUV与接驳站成功对接必须同时限制其侧向偏差和航向偏差,然而由于实际环境中存在未知洋流,对接控制问题会更为复杂。针对上述情况,设计了回坞控制器,在控制器中嵌入洋流在线估计器/补偿器。洋流估计器可以仅基于AUV相对于地面的速度以及姿态来估计水平方向和垂直方向洋流的大小,而大多数现有方法需要测量AUV相对于大地以及相对于水体的速度。在仿真分析基础上,在基于MOOS-IvP的原型AUV中实现了所设计的回坞策略。仿真结果表明,即使存在侧翼洋流干扰,洋流估计器/补偿器也能很好地工作。最后,通过一系列海上实验验证洋流估计器/补偿器以及整个对接系统的有效性。海试结果表明,本文设计的控制方法可以有效控制AUV入坞。

关键词组:自主水下航行器;接驳系统;洋流估计器;洋流补偿器;回坞控制


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.1700382

CLC number:

TP242

Download Full Text:

Click Here

Downloaded:

3643

Download summary:

<Click Here> 

Downloaded:

1972

Clicked:

8288

Cited:

0

On-line Access:

2024-08-27

Received:

2023-10-17

Revision Accepted:

2024-05-08

Crosschecked:

2018-08-15

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE