Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

RFES: a real-time fire evacuation system for Mobile Web3D

Abstract: There are many bottlenecks that limit the computing power of the Mobile Web3D and they need to be solved before implementing a public fire evacuation system on this platform. In this study, we focus on three key problems: (1) The scene data for large-scale building information modeling (BIM) are huge, so it is difficult to transmit the data via the Internet and visualize them on the Web; (2) The raw fire dynamic simulator (FDS) smoke diffusion data are also very large, so it is extremely difficult to transmit the data via the Internet and visualize them on the Web; (3) A smart artificial intelligence fire evacuation app for the public should be accurate and real-time. To address these problems, the following solutions are proposed: (1) The large-scale scene model is made lightweight; (2) The amount of dynamic smoke is also made lightweight; (3) The dynamic obstacle maps established from the scene model and smoke data are used for optimal path planning using a heuristic method. We propose a real-time fire evacuation system based on the ant colony optimization (RFES-ACO) algorithm with reused dynamic pheromones. Simulation results show that the public could use Mobile Web3D devices to experience fire evacuation drills in real time smoothly. The real-time fire evacuation system (RFES) is efficient and the evacuation rate is better than those of the other two algorithms, i.e., the leader-follower fire evacuation algorithm and the random fire evacuation algorithm.

Key words: Fire evacuation drill, Building information modeling (BIM) building space, Mobile Web3D, Real-time fire evacuation system based on ant colony optimization (RFES-ACO) algorithm

Chinese Summary  <27> RFES:一种面向移动Web3D的实时火灾逃生系统

摘要:基于Web3D构建公共消防疏散系统存在许多限制其计算能力的瓶颈。本文集中解决3个关键问题:(1)大型建筑场景数据量大,难以通过互联网传输并在网络终端设备实现可视化;(2)原始火灾动态模拟器烟气数据量大,且实时动态变化,难以通过互联网传输并在网络终端设备实现可视化;(3)为公众提供的智能消防疏散系统往往难以兼顾准确性和实时性。针对以上问题,本文提出3个解决方案:(1)将大型场景模型简化为轻量型场景模型;(2)将动态烟雾简化为轻量级烟雾模型;(3)利用场景模型和烟雾数据建立动态障碍物图,规划最优疏散路径。本文提出一种基于蚁群优化算法(RFES-ACO)的实时消防疏散系统,该算法基于动态信息素重用。仿真结果表明,公众可在移动Web3D设备上实时、顺畅地进行消防疏散演练的交互和体验。最后,与leader-follower算法和随机算法的对比实验,证明了实时消防疏散系统(RFES)的高效性,其疏散率优于其它两种算法。

关键词组:消防疏散演习;建筑信息建模建筑空间;移动Web3D;基于蚁群优化算法的实时消防疏散系统


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.1700548

CLC number:

TP391

Download Full Text:

Click Here

Downloaded:

2293

Download summary:

<Click Here> 

Downloaded:

1595

Clicked:

5708

Cited:

0

On-line Access:

2019-08-29

Received:

2017-10-07

Revision Accepted:

2018-03-09

Crosschecked:

2019-07-03

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE