Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

Layer-wise domain correction for unsupervised domain adaptation

Abstract: Deep neural networks have been successfully applied to numerous machine learning tasks because of their impressive feature abstraction capabilities. However, conventional deep networks assume that the training and test data are sampled from the same distribution, and this assumption is often violated in real-world scenarios. To address the domain shift or data bias problems, we introduce layer-wise domain correction (LDC), a new unsupervised domain adaptation algorithm which adapts an existing deep network through additive correction layers spaced throughout the network. Through the additive layers, the representations of source and target domains can be perfectly aligned. The corrections that are trained via maximum mean discrepancy, adapt to the target domain while increasing the representational capacity of the network. LDC requires no target labels, achieves state-of-the-art performance across several adaptation benchmarks, and requires significantly less training time than existing adaptation methods.

The online version of this article contains electronic supplementary materials, which are available to authorized users.

Key words: Unsupervised domain adaptation, Maximum mean discrepancy, Residual network, Deep learning

Chinese Summary  <39> 针对无监督域自适应问题的深度逐层领域修正算法

概要:深度神经网络凭借强大的特征抽象能力,已成功应用在机器学习的多个领域。然而,传统深度网络假设训练样本和测试样本来自同一分布,这一假设在很多实际应用中并不成立。为借助深度网络解决领域偏移问题,本文提出逐层领域修正(layer-wise domain correction, LDC)深度域自适应算法。该算法通过在已有深度网络中增加领域修正层,将源域网络成功适配到目标领域。逐层增加的领域修正层能够将两个领域特征的最大均值偏差(maximum mean discrepancy, MMD)距离最小化,从而完美匹配源域和目标域样本的特征表示。与此同时,网络深度的增加极大提高了网络表达能力。LDC算法不需要目标领域有标记样本,在几个跨领域分类识别数据集都取得了当时最好结果,且其训练比已有深度域自适应算法快近10倍。

关键词组:无监督域自适应;最大均值偏差;残差网络;深度学习


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.1700774

CLC number:

TP183

Download Full Text:

Click Here

Downloaded:

2446

Download summary:

<Click Here> 

Downloaded:

1679

Clicked:

7426

Cited:

0

On-line Access:

2024-08-27

Received:

2023-10-17

Revision Accepted:

2024-05-08

Crosschecked:

2018-01-19

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE