|
Frontiers of Information Technology & Electronic Engineering
ISSN 2095-9184 (print), ISSN 2095-9230 (online)
2018 Vol.19 No.1 P.104-115
Temporality-enhanced knowledge memory network for factoid question answering
Abstract: Question answering is an important problem that aims to deliver specific answers to questions posed by humans in natural language. How to efficiently identify the exact answer with respect to a given question has become an active line of research. Previous approaches in factoid question answering tasks typically focus on modeling the semantic relevance or syntactic relationship between a given question and its corresponding answer. Most of these models suffer when a question contains very little content that is indicative of the answer. In this paper, we devise an architecture named the temporality-enhanced knowledge memory network (TE-KMN) and apply the model to a factoid question answering dataset from a trivia competition called quiz bowl. Unlike most of the existing approaches, our model encodes not only the content of questions and answers, but also the temporal cues in a sequence of ordered sentences which gradually remark the answer. Moreover, our model collaboratively uses external knowledge for a better understanding of a given question. The experimental results demonstrate that our method achieves better performance than several state-of-the-art methods.
Key words: Question answering, Knowledge memory, Temporality interaction
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/FITEE.1700788
CLC number:
TP391
Download Full Text:
Downloaded:
3010
Download summary:
<Click Here>Downloaded:
1829Clicked:
6913
Cited:
0
On-line Access:
2024-08-27
Received:
2023-10-17
Revision Accepted:
2024-05-08
Crosschecked:
2018-01-25