Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

Control strategy for gait transition of an underactuated 3D bipedal robot

Abstract: Significant research interest has recently been attracted to the study of bipedal robots due to the wide variety of their potential applications. In reality, bipedal robots are often required to perform gait transitions to achieve flexible walking. In this paper, we consider the gait transition of a five-link underactuated three-dimensional (3D) bipedal robot, and propose a two-layer control strategy. The strategy consists of a unique, event-based, feedback controller whose feedback gain in each step is updated by an adaptive control law, and a transition controller that guides the robot from the current gait to a neighboring point of the target gait so that the state trajectory can smoothly converge to the target gait. Compared with previous works, the transition controller is parameterized and its control parameters are obtained by solving an optimization problem to guarantee the physical constraints in the transition process. Finally, the effectiveness of the control strategy is illustrated on the underactuated 3D bipedal robot.

Key words: Gait transition, Underactuated three-dimensional biped, Event-based feedback controller, Adaptive control law

Chinese Summary  <37> 欠驱动3D双足机器人步态切换控制策略

摘要:由于应用前景广泛,双足机器人研究引起国内外学者重点关注。实际中,双足机器人常需进行步态切换以实现灵活步行。本文针对一个五杆欠驱动3D双足机器人步态切换问题,提出一种基于分层控制的切换控制策略。该策略包括切换控制器设计以及基于事件的反馈控制器设计。所设计的基于事件反馈控制器会在每一步对反馈增益进行自适应更新,而所设计的切换控制器将引导机器人从当前步态到达目标步态的邻域范围以实现平滑收敛。与以往研究相比,本文采用参数优化法设计切换控制器参数,确保机器人在步态切换过程中满足物理约束条件。最后,为验证所提控制策略的有效性,针对欠驱动3D双足机器人进行了数值仿真验证。

关键词组:步态切换;欠驱动3D双足机器人;基于事件的反馈控制器;自适应控制律


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.1800206

CLC number:

TP242

Download Full Text:

Click Here

Downloaded:

2243

Download summary:

<Click Here> 

Downloaded:

1623

Clicked:

6356

Cited:

0

On-line Access:

2024-08-27

Received:

2023-10-17

Revision Accepted:

2024-05-08

Crosschecked:

2019-08-09

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE