Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

Dynamics of a neuron exposed to integer- and fractional-order discontinuous external magnetic flux

Abstract: We propose a modified Fitzhugh-Nagumo neuron (MFNN) model. Based on this model, an integer-order MFNN system (case A) and a fractional-order MFNN system (case B) were investigated. In the presence of electromagnetic induction and radiation, memductance and induction can show a variety of distributions. Fractional-order magnetic flux can then be considered. Indeed, a fractional-order setting can be acceptable for non-uniform diffusion. In the case of an MFNN system with integer-order discontinuous magnetic flux, the system has chaotic and non-chaotic attractors. Dynamical analysis of the system shows the birth and death of period doubling, which is a sign of antimonotonicity. Such a behavior has not been studied previously in the dynamics of neurons. In an MFNN system with fractional-order discontinuous magnetic flux, different attractors such as chaotic and periodic attractors can be observed. However, there is no sign of antimonotonicity.

Key words: Fitzhugh-Nagumo, Chaos, Fractional order, Magnetic flux

Chinese Summary  <21>  整数阶与分数阶非连续外磁通量的神经元动力学

摘要:提出一种改进Fitzugh-Nagumo神经元(MFNN)模型。在此模型基础上,研究了基于整数阶(案例A)与分数阶(案例B)的MFNN系统。在电磁感应和辐射作用下,记忆和感应呈现多种分布,证明该分数阶磁通量适用于非均匀扩散。整数阶非连续磁通量MFNN系统具有混沌和非混沌吸引子。系统动力学分析显示倍周期的产生和消失标志着反单调性,神经元动力学研究未曾报道此现象。在分数阶非连续磁通量MFNN系统中,混沌吸引子和周期吸引子无反单调性。

关键词组:Fitzhugh-Nagumo;混沌;分数阶;磁通量


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.1800389

CLC number:

O44

Download Full Text:

Click Here

Downloaded:

2041

Download summary:

<Click Here> 

Downloaded:

1500

Clicked:

5600

Cited:

0

On-line Access:

2019-05-14

Received:

2018-06-23

Revision Accepted:

2018-09-14

Crosschecked:

2019-01-25

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE