Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

Task planning in robotics: an empirical comparison of PDDL- and ASP-based systems

Abstract: Robots need task planning algorithms to sequence actions toward accomplishing goals that are impossible through individual actions. Off-the-shelf task planners can be used by intelligent robotics practitioners to solve a variety of planning problems. However, many different planners exist, each with different strengths and weaknesses, and there are no general rules for which planner would be best to apply to a given problem. In this study, we empirically compare the performance of state-of-the-art planners that use either the planning domain description language (PDDL) or answer set programming (ASP) as the underlying action language. PDDL is designed for task planning, and PDDL-based planners are widely used for a variety of planning problems. ASP is designed for knowledge-intensive reasoning, but can also be used to solve task planning problems. Given domain encodings that are as similar as possible, we find that PDDL-based planners perform better on problems with longer solutions, and ASP-based planners are better on tasks with a large number of objects or tasks in which complex reasoning is required to reason about action preconditions and effects. The resulting analysis can inform selection among general-purpose planning systems for particular robot task planning domains.

Key words: Task planning, Robotics, Planning domain description language (PDDL), Answer set programming (ASP)

Chinese Summary  <26> 机器人任务规划:基于PDDL和ASP的任务规划系统实验比较研究

摘要:面对无法用单一动作解决的复杂任务时,机器人需要通过任务规划算法生成一个动作序列。现有任务规划器可以帮助智能机器人开发人员解决许多种类任务规划问题。然而,不同规划器有不同优势和劣势,没有统一准则针对问题选择规划器。本文比较了目前最先进的基于规划领域定义语言(planning domain description language, PDDL)和回答集程序(answer set programming, ASP)规划器的性能。PDDL是特别为任务规划而设计的动作语言,被广泛应用于各种规划问题。ASP主要用于知识推理,同时也能解决任务规划问题。针对这两种语言,本文使用尽可能相同的领域描述。实验结果表明,基于PDDL的规划器善于解决需要生成较多待执行动作的问题,而基于ASP的规划器更适合解决涉及对象较多的任务,或需对前提条件和后置条件做复杂推理的规划问题。针对具体机器人规划问题,本文得到的结论可以帮助研究人员从通用规划系统中选择合适规划器。

关键词组:任务规划;机器人;规划领域定义语言(PDDL);回答集程序(ASP)


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.1800514

CLC number:

TP242

Download Full Text:

Click Here

Downloaded:

2707

Download summary:

<Click Here> 

Downloaded:

1549

Clicked:

7742

Cited:

0

On-line Access:

2024-08-27

Received:

2023-10-17

Revision Accepted:

2024-05-08

Crosschecked:

2019-03-14

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE