Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

Learning to select pseudo labels: a semi-supervised method for named entity recognition

Abstract: Deep learning models have achieved state-of-the-art performance in named entity recognition (NER); the good performance, however, relies heavily on substantial amounts of labeled data. In some specific areas such as medical, financial, and military domains, labeled data is very scarce, while unlabeled data is readily available. Previous studies have used unlabeled data to enrich word representations, but a large amount of entity information in unlabeled data is neglected, which may be beneficial to the NER task. In this study, we propose a semi-supervised method for NER tasks, which learns to create high-quality labeled data by applying a pre-trained module to filter out erroneous pseudo labels. Pseudo labels are automatically generated for unlabeled data and used as if they were true labels. Our semi-supervised framework includes three steps: constructing an optimal single neural model for a specific NER task, learning a module that evaluates pseudo labels, and creating new labeled data and improving the NER model iteratively. Experimental results on two English NER tasks and one Chinese clinical NER task demonstrate that our method further improves the performance of the best single neural model. Even when we use only pre-trained static word embeddings and do not rely on any external knowledge, our method achieves comparable performance to those state-of-the-art models on the CoNLL-2003 and OntoNotes 5.0 English NER tasks.

Key words: Named entity recognition, Unlabeled data, Deep learning, Semi-supervised method

Chinese Summary  <41> 学习挑选伪标签:一种用于命名实体识别的半监督学习方法

李真真,冯大为,李东升,卢锡城
国防科技大学计算机学院,中国长沙市,410073

摘要:深度学习模型在命名实体识别(NER)中实现了最先进的性能;然而,其良好性能很大程度上依赖于大量标记数据。在某些特定领域,例如医学、金融和军事领域,标记数据非常稀缺,而未标记数据则很容易获得。过往研究使用未标记数据丰富词的表示,却忽略了未标记数据中对NER任务很可能有帮助的大量实体信息。本文提出一种用于NER任务的半监督方法,其通过学习一个判别模块筛除错误伪标签,以创建高质量标注数据。伪标签是为未标记数据自动生成的标签,并被当作真实标签用来训练模型。该半监督框架包括3个步骤:为特定NER任务构建最佳单神经网络模型,学习一个评价伪标签的模块,以及迭代创建新的标记数据和改进NER模型。两个英语NER任务和一个中文医疗命名实体识别任务的实验结果表明,该方法进一步提高了最佳单神经模型的性能。当仅使用预训练的静态词嵌入且不依赖任何外部知识时,该方法可获得与CoNLL-2003和OntoNotes 5.0英语NER任务上最先进模型相当的性能。

关键词组:命名实体识别;无标注数据;深度学习;半监督学习方法


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.1800743

CLC number:

TP391.1

Download Full Text:

Click Here

Downloaded:

8509

Download summary:

<Click Here> 

Downloaded:

2032

Clicked:

7897

Cited:

0

On-line Access:

2024-08-27

Received:

2023-10-17

Revision Accepted:

2024-05-08

Crosschecked:

2019-08-19

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE