|
Frontiers of Information Technology & Electronic Engineering
ISSN 2095-9184 (print), ISSN 2095-9230 (online)
2018 Vol.19 No.1 P.1-2
2018 special issue on artificial intelligence 2.0: theories and applications
Abstract: In July 2017, the Chinese government issued a guideline on developing artificial intelligence (AI), namely, the ‘New-Generation Artificial Intelligence Development Plan’ through 2030 to the public, setting a goal of becoming a global innovationcenter in this field by 2030.According to the development plan, breakthroughs should be made in basic theoriesof AI in terms of big data intelligence, cross-media computing, human-machine hybrid intelligence,collective intelligence, autonomous unmanned decision-making, brain-like computing, and quantum intelligent computing.The next-generation AI would be never-ending (self) learning from data andexperience, intuitive reasoning and adaptation (Pan, 2016, 2017). From the perspectiveof overcoming the limitation of existing AI, it is generally recognized that the cross-disciplinary collaboration is a keyforAI having real impact on the world.
Thanks for the efforts from researchers in computer science, statistics, robotics,and psychiatry, the topics in this special issue consist mainly of five subjects:(1) fundamental issues in AI such as interpretable deep learning and unsupervisedlearning (i.e., domain adaptation and generative adversarial learning); (2) brain-like learning such as spiking neural network and memory-augmented reasoning; (3) human-in-the-loop learning such as crowdsourcing design and digital brain with crowd power; (4) creativeapplications such as social chatbots (i.e., XiaoICe) and automatic speech recognition;(5) Dr. Raj Reddy from CMU shared his view on the new-generation AI, Prof. Bin Yufrom UC Berkeley advocated that AI should use statistical concepts through human–machine collaboration, and researchers from the Chinese Academy of Sciences surveyedthe acceleration of deep neural networks. All ofinterview, perspective, survey, and research papers targetrethinking the appropriate ways for a general scenario or a specific application.
Key words:
根据新一代人工智能发展规划,要瞄准大数据智能、跨媒体计算、人机混合智能、群体智能、自主无人化决策、类脑计算、量子智能计算等人工智能基础理论进行深入研究,取得突破。
下一代人工智能具有从数据和经验中无限(自我)学习、直觉推理、自适应等特点(Pan, 2016, 2017)。为克服现有人工智能的局限,人们普遍认识到,跨学科领域合作是人工智能真正影响世界的关键因素。
感谢来自计算机科学、统计学、机器人和精神病学等领域的研究人员为本期特刊撰写高质量论文。本期特刊主要涵盖如下5个方面主题:(1)人工智能基本理论问题,如可解释性深度学习和无监督学习(即领域自适应学习和生成对抗性学习);(2)类脑学习,如脉冲神经网络和记忆增强推理;(3)人在回路智能学习,如众包设计和数字大脑;(4)创意智能应用,如社交聊天机器人(即小冰)和自动语音识别;(5)卡耐基梅隆大学RajReddy博士分享了他对新一代人工智能的看法,加州大学伯克利分校郁彬教授主张在人机协作中使用统计概念以提升智能,中国科学院程健研究员等综述了深度神经网络加速方法。
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/FITEE.1810000
CLC number:
Download Full Text:
Downloaded:
2562
Clicked:
5755
Cited:
0
On-line Access:
2024-08-27
Received:
2023-10-17
Revision Accepted:
2024-05-08
Crosschecked:
2022-04-22