|
Frontiers of Information Technology & Electronic Engineering
ISSN 2095-9184 (print), ISSN 2095-9230 (online)
2020 Vol.21 No.3 P.405-421
A quantitative attribute-based benchmark methodology for single-target visual tracking
Abstract: In the past several years, various visual object tracking benchmarks have been proposed, and some of them have been used widely in numerous recently proposed trackers. However, most of the discussions focus on the overall performance, and cannot describe the strengths and weaknesses of the trackers in detail. Meanwhile, several benchmark measures that are often used in tests lack convincing interpretation. In this paper, 12 frame-wise visual attributes that reflect different aspects of the characteristics of image sequences are collated, and a normalized quantitative formulaic definition has been given to each of them for the first time. Based on these definitions, we propose two novel test methodologies, a correlation-based test and a weight-based test, which can provide a more intuitive and easier demonstration of the trackers’ performance for each aspect. Then these methods have been applied to the raw results from one of the most famous tracking challenges, the Video Object Tracking (VOT) Challenge 2017. From the tests, most trackers did not perform well when the size of the target changed rapidly or intensely, and even the advanced deep learning based trackers did not perfectly solve the problem. The scale of the targets was not considered in the calculation of the center location error; however, in a practical test, the center location error is still sensitive to the targets’ changes in size.
Key words: Visual tracking, Performance evaluation, Visual attributes, Computer vision
1哈尔滨工业大学信息科学与工程学院,中国威海市,264209
2南洋理工大学电气与电子工程学院,新加坡,639798
摘要:视觉跟踪是计算机视觉领域热门研究课题之一。近年来,很多先进跟踪算法和性能评价基准相继发布,并取得巨大成功。现有评价体系大多定位于衡量整体性能,无法通过针对性的详细论证评估跟踪器的优势和缺点,且很多常用评测指标缺乏令人信服的含义解释。本文从测试数据、测试方法、测试指标3方面深入分析跟踪评价体系的细节。首先,归纳整理了12个反映图像序列不同特性的帧间视觉属性,并首次定量给出其归一化公式。基于这些属性定义,提出两种新的测试方法,即基于相关性的测试和基于权重的测试,使评价体系能更直观、更清晰地评定跟踪器各方面性能。然后,将所提测试方法应用于著名的跟踪挑战赛,即Video Object Tracking (VOT) Challenge 2017。测试结果表明,在目标尺寸快速或剧烈变化时,跟踪器大多表现不佳,即使基于深度学习的先进跟踪器也未能很好解决这一问题。此外发现,中心位置差错(center location error,CLE)性能指标虽未考虑到目标尺度,在实际测试中仍对目标尺寸变化很敏感。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/FITEE.1900245
CLC number:
TP723
Download Full Text:
Downloaded:
2101
Download summary:
<Click Here>Downloaded:
1643Clicked:
6602
Cited:
0
On-line Access:
2024-08-27
Received:
2023-10-17
Revision Accepted:
2024-05-08
Crosschecked:
2019-11-12