Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

Polynomial robust observer implementation based passive synchronization of nonlinear fractional-order systems with structural disturbances

Abstract: A robust polynomial observer is designed based on passive synchronization of a given class of fractional-order Colpitts (FOC) systems with mismatched uncertainties and disturbances. The primary objective of the proposed observer is to minimize the effects of unknown bounded disturbances on the estimation of errors. A more practicable output-feedback passive controller is proposed using an adaptive polynomial state observer. The distributed approach of a continuous frequency of the FOC is considered to analyze the stability of the observer. Then we derive some stringent conditions for the robust passive synchronization using Finsler’s lemma based on the fractional Lyapunov stability theory. It is shown that the proposed method not only guarantees the asymptotic stability of the controller but also allows the derived adaptation law to remove the uncertainties within the nonlinear plant’s dynamics. The entire system using passivity is implemented with details in PSpice to demonstrate the feasibility of the proposed control scheme. The results of this research are illustrated using computer simulations for the control problem of the fractional-order chaotic Colpitts system. The proposed approach depicts an efficient and systematic control procedure for a large class of nonlinear systems with the fractional derivative.

Key words: Robust passive observer, Adaptive synchronization, Lyapunov theory, Fractional-orde, Polynomial observere, Uncertain parameters, H-performance

Chinese Summary  <32> 基于多项式鲁棒观测器实现结构扰动下非线性分数阶系统被动式同步

Alain Soup Tewa KAMMOGNE1, Michaux Noubé KOUNTCHOU2, Romanic KENGNE1,
Ahmad Taher AZAR3,4, Hilaire Bertrand FOTSIN1, Soup Teoua Michael OUAGNI5
1德尚大学理学院LAMACETS,喀麦隆,96号信箱
2地质与矿业研究所核技术科,喀麦隆雅温得,4110号信箱
3苏丹王子大学机器人与物联网实验室(RIOTU),沙特阿拉伯利雅得,11586
4本哈大学计算机与人工智能学院,埃及本哈,13511
5德尚大学理学院力学与物理系统模拟实验室,喀麦隆,96号信箱

摘要:基于对一类具有不匹配的不确定性和扰动的分数阶Colpitts(fractional-order Colpitts,FOC)系统的无源同步,设计一种鲁棒的多项式观测器,以最小化未知的有界干扰对误差估计的影响。利用自适应多项式状态观测器,提出一种更实用的输出反馈无源控制器,采用FOC连续频率分布式方法分析观测器的稳定性。基于分数阶Lyapunov稳定性理论,结合Finsler引理,构造鲁棒无源同步的严格条件。所提方法保证了控制器的渐近稳定性,且所导出的自适应律能够消除非线性对象动力学的不确定性。使用PSpice对整个系统作仿真,以证实所提控制方案的可行性。对分数阶混沌Colpitts系统中控制问题的仿真分析表明,该方法为一大类非线性分数阶导数系统构建了高效且系统的控制过程。

关键词组:鲁棒无源观测器;自适应同步;Lyapunov理论;分数阶;多项式观测器;不确定参数;H-性能


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.1900430

CLC number:

TP273; O415

Download Full Text:

Click Here

Downloaded:

9106

Download summary:

<Click Here> 

Downloaded:

1696

Clicked:

6115

Cited:

0

On-line Access:

2024-08-27

Received:

2023-10-17

Revision Accepted:

2024-05-08

Crosschecked:

2020-08-05

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE