|
Frontiers of Information Technology & Electronic Engineering
ISSN 2095-9184 (print), ISSN 2095-9230 (online)
2020 Vol.21 No.5 P.760-776
Novel 3D point set registration method based on regionalized Gaussian process map reconstruction
Abstract: Point set registration has been a topic of significant research interest in the field of mobile intelligent unmanned systems. In this paper, we present a novel approach for a three-dimensional scan-to-map point set registration. Using Gaussian process (GP) regression, we propose a new type of map representation, based on a regionalized GP map reconstruction algorithm. We combine the predictions and the test locations derived from the GP as the predictive points. In our approach, the correspondence relationships between predictive point pairs are set up naturally, and a rigid transformation is calculated iteratively. The proposed method is implemented and tested on three standard point set datasets. Experimental results show that our method achieves stable performance with regard to accuracy and efficiency, on a par with two standard methods, the iterative closest point algorithm and the normal distribution transform. Our mapping method also provides a compact point-cloud-like map and exhibits low memory consumption.
Key words: Point set registration, Gaussian process, Intelligent unmanned system (IUS)
1浙江大学航空航天学院,中国杭州市,310027
2浙江大学控制科学与工程学院工业控制技术国家重点实验室,中国杭州市,310027
摘要:点集配准问题是移动智能无人系统领域一项重要研究课题。本文提出一种全新"帧到地图"式三维点集配准方法。首先提出区域化高斯过程(Gaussian process,简称GP)地图重构算法,由此得到一种全新地图表现形式。将由GP得到的预测值和预测位置组合在一起作为预测点,以此自然地建立起预测点对的对应关系,并使用迭代方式计算位姿变换。利用3组标准点集数据集对该方法进行验证和测试。实验结果表明,相较于迭代最近点算法和正态分布变换两种经典点集配准方法,该方法在精度和效率两方面都有更佳表现。此外,所提的地图重构算法能够在降低内存消耗的同时,提供稠密的类点云地图。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/FITEE.1900457
CLC number:
TP242.6
Download Full Text:
Downloaded:
4284
Download summary:
<Click Here>Downloaded:
1663Clicked:
5887
Cited:
0
On-line Access:
2024-08-27
Received:
2023-10-17
Revision Accepted:
2024-05-08
Crosschecked:
2020-03-20