Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

Aggregated context network for crowd counting

Abstract: Crowd counting has been applied to a variety of applications such as video surveillance, traffic monitoring, assembly control, and other public safety applications. Context information, such as perspective distortion and background interference, is a crucial factor in achieving high performance for crowd counting. While traditional methods focus merely on solving one specific factor, we aggregate sufficient context information into the crowd counting network to tackle these problems simultaneously in this study. We build a fully convolutional network with two tasks, i.e., main density map estimation and auxiliary semantic segmentation. The main task is to extract the multi-scale and spatial context information to learn the density map. The auxiliary semantic segmentation task gives a comprehensive view of the background and foreground information, and the extracted information is finally incorporated into the main task by late fusion. We demonstrate that our network has better accuracy of estimation and higher robustness on three challenging datasets compared with state-of-the-art methods.

Key words: Crowd counting, Convolutional neural network, Density estimation, Semantic segmentation, Multi-task learning

Chinese Summary  <31> 聚合上下文信息的人群计数


余思悦1,浦剑1,2
1华东师范大学计算机科学与技术学院,中国上海市,200062
2复旦大学类脑智能科学与技术研究院,中国上海市,200433

摘要:人群计数被大量应用于视频监控、交通监控、汇编控制以及其它公共安全应用场景。上下文信息相关的透视扭曲和背景干扰是影响人群计数准确性的两个关键因素。区别于只解决其中一种特定因素的传统方法,本文提出一种人群计数网络,其充分聚合上下文信息,达到同时解决两种因素的目的。提出一个多任务的全卷积网络结构,学习人群密度估计和语义分割辅助任务,前者通过提取多尺度和空间上下文信息学习人群密度图,辅助语义分割任务通过学习背景和前景信息,后期将语义分割提取的信息融入人群密度估计任务。结果表明,提出的人群计数网络具有较好的人群计数准确率;与其它方法相比,提出的方法在3个具有挑战性的人群数据集上具有更高鲁棒性。

关键词组:人群计数;卷积神经网络;密度估计;语义分割;多任务学习


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.1900481

CLC number:

TP391

Download Full Text:

Click Here

Downloaded:

4985

Download summary:

<Click Here> 

Downloaded:

1597

Clicked:

5314

Cited:

0

On-line Access:

2024-08-27

Received:

2023-10-17

Revision Accepted:

2024-05-08

Crosschecked:

2020-05-18

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE