|
Frontiers of Information Technology & Electronic Engineering
ISSN 2095-9184 (print), ISSN 2095-9230 (online)
2020 Vol.21 No.1 P.97-115
Analysis and design of transformer-based CMOS ultra-wideband millimeter-wave circuits for wireless applications
Abstract: With a lot of millimeter-wave (mm-Wave) applications being issued, wideband circuits and systems have attracted much attention because of their strong applicability and versatility. In this paper, four transformer-based ultra-wideband mm-Wave circuits demonstrated in CMOS technologies are reviewed from theoretical analysis, implementation, to performance. First, we introduce a mm-Wave low-noise amplifier with transformer-based Gm-boosting and pole-tuning techniques. It achieves wide operating bandwidth, low noise figure, and good gain performance. Second, we review an injection-current-boosting technique which can significantly increase the locking range of mm-Wave injection-locked frequency triplers. Based on the injection locked principle, we also discuss an ultra-wideband mm-Wave divider with the transformer-based high-order resonator. Finally, an E-band up-conversion mixer is presented; using the two-path transconductance stage and transformer-based load, it obtains good linearity and a large operating band.
Key words: CMOS, Millimeter-wave (mm-Wave), Ultra-wideband, Transformer, Low-noise amplifier, Injection-locked frequency tripler, Injection-locked frequency divider, Mixer
电子科技大学电子科学与工程学院,中国成都市,611731
摘要:近年来,由于大量毫米波无线应用的产生,具有更强通用性的宽带毫米波电路和系统引起广泛关注。总结了4种基于片上变压器结构超宽带毫米波电路的理论分析、设计方法和综合性能。其一为毫米波低噪声放大器,采用基于变压器的跨导增强和极点调谐技术;通过采用这两种技术,该电路同时实现了较大工作带宽、低噪声系数和良好功率增益。其二为毫米波注入锁定三倍频器,采用注入电流增强技术,有效拓展了倍频器的锁定带宽。进一步,采用类似注入锁定技术结合变压器高阶谐振腔方案,实现了一款超宽带毫米波注入锁定分频器。最后,介绍了一款E波段上混频器,其采用两路跨导并联结构和基于变压器的多极点负载,实现了优异线性度和较大工作带宽。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/FITEE.1900491
CLC number:
TN92; TN43
Download Full Text:
Downloaded:
2770
Download summary:
<Click Here>Downloaded:
2012Clicked:
6554
Cited:
0
On-line Access:
2024-08-27
Received:
2023-10-17
Revision Accepted:
2024-05-08
Crosschecked:
2020-01-27