Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

A local density optimization method based on a graph convolutional network

Abstract: Success has been obtained using a semi-supervised graph analysis method based on a graph convolutional network (GCN). However, GCN ignores some local information at each node in the graph, so that data preprocessing is incomplete and the model generated is not accurate enough. Thus, in the case of numerous unsupervised models based on graph embedding technology, local node information is important. In this paper, we apply a local analysis method based on the similar neighbor hypothesis to a GCN, and propose a local density definition; we call this method LDGCN. The LDGCN algorithm processes the input data of GCN in two methods, i.e., the unbalanced and balanced methods. Thus, the optimized input data contains detailed local node information, and then the model generated is accurate after training. We also introduce the implementation of the LDGCN algorithm through the principle of GCN, and use three mainstream datasets to verify the effectiveness of the LDGCN algorithm (i.e., the Cora, Citeseer, and Pubmed datasets). Finally, we compare the performances of several mainstream graph analysis algorithms with that of the LDGCN algorithm. Experimental results show that the LDGCN algorithm has better performance in node classification tasks.

Key words: Semi-supervised learning, Graph convolutional network, Graph embedding, Local density

Chinese Summary  <30> 一个基于图卷积神经网络的局部密度优化方法

王浩1,2,董立岩1,2,范铁虎3,孙铭会1,2
1吉林大学计算机科学与技术学院,中国长春市,130012
2吉林大学符号计算与知识工程教育部重点实验室,中国长春市,130012
3吉林大学仪器科学与电气工程学院,中国长春市,130012

摘要:基于图卷积神经网络的半监督图分析(GCN)方法已取得成功。然而,该方法忽略了图中节点的某些局部信息,说明GCN数据预处理不够完善,训练产生的模型不够精确。因此,在基于图嵌入技术的多个非监督方法中,对输入数据局部信息的采集非常重要。本文将基于相似邻接度假设的局部分析方法应用到图卷积网络,并给出局部密度的定义;该方法被称作LDGCN。LDGCN通过两种不同方法处理图卷积网络的输入数据,即非平衡方法和平衡方法。被处理后的输入数据包含更详细的结点局部信息,训练所生成的模型更准确。通过GCN原理介绍LDGCN的实现,然后使用3个主流图数据集(Cora,Citeseer和Pubmed)验证其有效性。最后,通过节点分类实验与多个主流图分析方法对比,结果表明LDGCN算法有更好表现。

关键词组:半监督学习;图卷积网络;图嵌入;局部密度


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.1900663

CLC number:

TP391

Download Full Text:

Click Here

Downloaded:

3016

Download summary:

<Click Here> 

Downloaded:

1638

Clicked:

5361

Cited:

0

On-line Access:

2024-08-27

Received:

2023-10-17

Revision Accepted:

2024-05-08

Crosschecked:

2020-09-24

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE