Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

Auxiliary diagnostic system for ADHD in children based on AI technology

Abstract: Traditional diagnosis of attention deficit hyperactivity disorder (ADHD) in children is primarily through a questionnaire filled out by parents/teachers and clinical observations by doctors. It is inefficient and heavily depends on the doctor’s level of experience. In this paper, we integrate artificial intelligence (AI) technology into a software-hardware coordinated system to make ADHD diagnosis more efficient. Together with the intelligent analysis module, the camera group will collect the eye focus, facial expression, 3D body posture, and other children’s information during the completion of the functional test. Then, a multi-modal deep learning model is proposed to classify abnormal behavior fragments of children from the captured videos. In combination with other system modules, standardized diagnostic reports can be automatically generated, including test results, abnormal behavior analysis, diagnostic aid conclusions, and treatment recommendations. This system has participated in clinical diagnosis in Department of Psychology, The Children’s Hospital, Zhejiang University School of Medicine, and has been accepted and praised by doctors and patients.

Key words: Attention deficit hyperactivity disorder (ADHD), Auxiliary diagnosis, Computer vision, Deep learning, BERT

Chinese Summary  <40> 基于人工智能技术的儿童ADHD辅助诊断系统

张雁翼1,孔鸣2,赵天琦2,洪文琛2,谢迪3,王春茂3,杨荣旺1,李荣1,朱强2
1浙江大学医学院附属儿童医院(国家儿童健康与疾病临床医学研究中心)心理科,中国杭州市,310052
2浙江大学计算机科学与技术学院,中国杭州市,310027
3海康威视研究院,中国杭州市,310052
摘要:传统的儿童注意缺陷多动障碍(ADHD)诊断主要基于由父母/老师填写的调查问卷和医生的临床观察,不仅效率不高,而且诊断准确率很大程度上取决于医生的经验水平。本文将人工智能技术结合到一种软硬件协同辅助诊断系统中,以使ADHD诊断更为高效。通过集成智能分析模块,相机模组将采集受试儿童完成执行功能测试时的眼部注意力、面部表情、3D身体姿态和其他测试信息。然后,提出一种多模态深度学习模型,用于对所采集视频中儿童的异常行为片段进行分类。结合其他系统模块所采集的信息,辅助诊断系统能够自动生成标准化的诊断报告,包括测试结果、异常行为分析、辅助诊断结论和治疗建议。该系统目前实际部署在浙江大学医学院附属儿童医院心理科,用于临床辅助诊断,得到医生和患者一致好评。

关键词组:注意缺陷多动障碍(ADHD);辅助诊断;计算机视觉;深度学习;BERT


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.1900729

CLC number:

TP391.4

Download Full Text:

Click Here

Downloaded:

5947

Download summary:

<Click Here> 

Downloaded:

1603

Clicked:

5775

Cited:

0

On-line Access:

2024-08-27

Received:

2023-10-17

Revision Accepted:

2024-05-08

Crosschecked:

2020-11-13

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE