Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

Multi-UAV obstacle avoidance control via multi-objective social learning pigeon-inspired optimization

Abstract: We propose multi-objective social learning pigeon-inspired optimization (MSLPIO) and apply it to obstacle avoidance for unmanned aerial vehicle (UAV) formation. In the algorithm, each pigeon learns from the better pigeon but not necessarily the global best one in the update process. A social learning factor is added to the map and compass operator and the landmark operator. In addition, a dimension-dependent parameter setting method is adopted to improve the blindness of parameter setting. We simulate the flight process of five UAVs in a complex obstacle environment. Results verify the effectiveness of the proposed method. MSLPIO has better convergence performance compared with the improved multi-objective pigeon-inspired optimization and the improved non-dominated sorting genetic algorithm.

Key words: Unmanned aerial vehicle (UAV), Obstacle avoidance, Pigeon-inspired optimization, Multi-objective social learning pigeon-inspired optimization (MSLPIO)

Chinese Summary  <33> 基于多目标社会学习鸽群优化的多无人机避障控制

阮婉莹1,段海滨1,2
1北京航空航天大学自动化科学与电气工程学院,虚拟现实技术与系统国家重点实验室,中国北京市,100083
2鹏城实验室,中国深圳市,518000

摘要:提出多目标社会学习鸽群优化(MSLPIO)方法,将其应用于无人机编队避障控制。该算法特点在于,每只鸽子在更新过程中并非向全局最优的鸽子学习,而是学习比自己占优的任何鸽子。在地图指南针算子和地标算子中引入社会学习因子。此外,为避免参数设置的盲目性,采用维数相关的参数设置方法。本文模拟了5架飞机在复杂障碍环境下的飞行过程,实验结果验证了该方法的有效性。与改进的多目标鸽群优化算法和改进的非占优排序遗传算法相比,MSLPIO具有更好的收敛性。

关键词组:无人机;避障;鸽群优化;多目标社会学习鸽群优化


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.2000066

CLC number:

TP242.6; V279

Download Full Text:

Click Here

Downloaded:

3657

Download summary:

<Click Here> 

Downloaded:

1713

Clicked:

6320

Cited:

0

On-line Access:

2024-08-27

Received:

2023-10-17

Revision Accepted:

2024-05-08

Crosschecked:

2020-04-13

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE