|
Frontiers of Information Technology & Electronic Engineering
ISSN 2095-9184 (print), ISSN 2095-9230 (online)
2021 Vol.22 No.7 P.915-925
A review of computer graphics approaches to urban modeling from a machine learning perspective
Abstract: Urban modeling facilitates the generation of virtual environments for various scenarios about cities. It requires expertise and consideration, and therefore consumes massive time and computation resources. Nevertheless, related tasks sometimes result in dissatisfaction or even failure. These challenges have received significant attention from researchers in the area of computer graphics. Meanwhile, the burgeoning development of artificial intelligence motivates people to exploit machine learning, and hence improves the conventional solutions. In this paper, we present a review of approaches to urban modeling in computer graphics using machine learning in the literature published between 2010 and 2019. This serves as an overview of the current state of research on urban modeling from a machine learning perspective.
Key words: Urban modeling, Computer graphics, Machine learning, Deep learning
1乐卓博大学计算机科学与信息技术系,澳大利亚维多利亚州,3086
2中国科学院计算技术研究所,中国北京市,100190
3新南威尔士大学扩展感知与交互中心,澳大利亚新南威尔士州,2021
4联邦科学与工业研究组织Data61,澳大利亚新南威尔士州,2015
摘要:城市建模为生成城市不同场景下的虚拟环境提供了便利。城市建模需要专业知识和考虑,并消耗大量时间和计算资源。即便如此,与之相关的任务有时仍以不满意的结果甚至失败告终。这些挑战得到了计算机图形学领域学者的大量关注。同时,人工智能的蓬勃发展激励人们充分利用机器学习以改进现有解决方案。本文回顾了2010至2019年间发表的文献,对计算机图形领域中使用机器学习的城市建模方法进行综述。本文可作为机器学习视角下城市建模研究现状的概述。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/FITEE.2000141
CLC number:
TP399
Download Full Text:
Downloaded:
6674
Download summary:
<Click Here>Downloaded:
1729Clicked:
6024
Cited:
0
On-line Access:
2024-08-27
Received:
2023-10-17
Revision Accepted:
2024-05-08
Crosschecked:
2021-05-07