Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

A random finite set based joint probabilistic data association filter with non-homogeneous Markov chain

Abstract: We demonstrate a heuristic approach for optimizing the posterior density of the data association tracking algorithm via the random finite set (RFS) theory. Specifically, we propose an adjusted version of the joint probabilistic data association (JPDA) filter, known as the nearest-neighbor set JPDA (NNSJPDA). The target labels in all possible data association events are switched using a novel nearest-neighbor method based on the Kullback–Leibler divergence, with the goal of improving the accuracy of the marginalization. Next, the distribution of the target-label vector is considered. The transition matrix of the target-label vector can be obtained after the switching of the posterior density. This transition matrix varies with time, causing the propagation of the distribution of the target-label vector to follow a non-homogeneous Markov chain. We show that the chain is inherently doubly stochastic and deduce corresponding theorems. Through examples and simulations, the effectiveness of NNSJPDA is verified. The results can be easily generalized to other data association approaches under the same RFS framework.

Key words: Target tracking, Filtering theory, Random finite set theory, Bayes methods, Markov chain

Chinese Summary  <31> åŸºäºŽéšæœºæœ‰é™é›†çš„éžé½æ¬¡é©¬å°”å¯å¤«é“¾è”åˆæ¦‚率数æ®å…³è”滤波器

朱昀1,2,æ¢çˆ½3,å´æ™“军1,2,æ¨çº¢çº¢1,2
1陕西师范大学现代教学技术教育部é‡ç‚¹å®žéªŒå®¤ï¼Œä¸­å›½è¥¿å®‰å¸‚,710062
2陕西师范大学计算机科学学院,中国西安市,710119
3西安电å­ç§‘技大学å‰æ²¿äº¤å‰ç ”究院,中国西安市,710071
摘è¦ï¼šæ出一ç§å¯å‘å¼æ–¹æ³•ï¼Œé€šè¿‡éšæœºæœ‰é™é›†ç†è®ºä¼˜åŒ–æ•°æ®å…³è”跟踪算法的åŽéªŒå¯†åº¦ã€‚具体而言,æ出一ç§æ”¹è¿›çš„è”åˆæ¦‚率数æ®å…³è”滤波方法,å³æœ€è¿‘邻集åˆè”åˆæ¦‚率数æ®å…³è”方法(NNSJPDA)。为æ高边缘化的准确性,利用一ç§åŸºäºŽKullback–Leibler散度的最近邻方法,对所有å¯èƒ½çš„æ•°æ®å…³è”事件中的目标标签进行转æ¢ã€‚此外,进一步考虑目标标签å‘é‡çš„分布。åŽéªŒå¯†åº¦è½¬æ¢åŽï¼Œå¯å¾—到目标标签å‘é‡çš„转移矩阵。该转移矩阵éšæ—¶é—´å˜åŒ–,使得目标标签å‘é‡åˆ†å¸ƒçš„ä¼ æ’­éµå¾ªéžé½æ¬¡é©¬å°”å¯å¤«é“¾ã€‚è¯æ˜Žäº†è¯¥é“¾æœ¬è´¨ä¸Šæ˜¯åŒéšæœºçš„,并推导了相应定ç†ã€‚通过举例和仿真,验è¯äº†æ‰€æ方法的有效性。本文结果å¯æŽ¨å¹¿åˆ°ç›¸åŒéšæœºæœ‰é™é›†æ¡†æž¶ä¸‹çš„其他数æ®å…³è”方法。

关键è¯ç»„:目标跟踪;滤波ç†è®ºï¼›éšæœºæœ‰é™é›†ç†è®ºï¼›è´å¶æ–¯æ–¹æ³•ï¼›é©¬å°”å¯å¤«é“¾


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.2000209

CLC number:

TN713

Download Full Text:

Click Here

Downloaded:

5384

Download summary:

<Click Here> 

Downloaded:

1708

Clicked:

5837

Cited:

0

On-line Access:

2024-08-27

Received:

2023-10-17

Revision Accepted:

2024-05-08

Crosschecked:

2021-07-14

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE