|
Frontiers of Information Technology & Electronic Engineering
ISSN 2095-9184 (print), ISSN 2095-9230 (online)
2021 Vol.22 No.8 P.1114-1126
A random finite set based joint probabilistic data association filter with non-homogeneous Markov chain
Abstract: We demonstrate a heuristic approach for optimizing the posterior density of the data association tracking algorithm via the random finite set (RFS) theory. Specifically, we propose an adjusted version of the joint probabilistic data association (JPDA) filter, known as the nearest-neighbor set JPDA (NNSJPDA). The target labels in all possible data association events are switched using a novel nearest-neighbor method based on the Kullback–Leibler divergence, with the goal of improving the accuracy of the marginalization. Next, the distribution of the target-label vector is considered. The transition matrix of the target-label vector can be obtained after the switching of the posterior density. This transition matrix varies with time, causing the propagation of the distribution of the target-label vector to follow a non-homogeneous Markov chain. We show that the chain is inherently doubly stochastic and deduce corresponding theorems. Through examples and simulations, the effectiveness of NNSJPDA is verified. The results can be easily generalized to other data association approaches under the same RFS framework.
Key words: Target tracking, Filtering theory, Random finite set theory, Bayes methods, Markov chain
1陕西师范大å¦çŽ°ä»£æ•™å¦æŠ€æœ¯æ•™è‚²éƒ¨é‡ç‚¹å®žéªŒå®¤ï¼Œä¸å›½è¥¿å®‰å¸‚,710062
2陕西师范大å¦è®¡ç®—机科å¦å¦é™¢ï¼Œä¸å›½è¥¿å®‰å¸‚,710119
3西安电å科技大å¦å‰æ²¿äº¤å‰ç ”究院,ä¸å›½è¥¿å®‰å¸‚,710071
摘è¦ï¼šæ出一ç§å¯å‘å¼æ–¹æ³•ï¼Œé€šè¿‡éšæœºæœ‰é™é›†ç†è®ºä¼˜åŒ–æ•°æ®å…³è”跟踪算法的åŽéªŒå¯†åº¦ã€‚具体而言,æ出一ç§æ”¹è¿›çš„è”åˆæ¦‚率数æ®å…³è”滤波方法,å³æœ€è¿‘邻集åˆè”åˆæ¦‚率数æ®å…³è”方法(NNSJPDA)。为æ高边缘化的准确性,利用一ç§åŸºäºŽKullback–Leibler散度的最近邻方法,对所有å¯èƒ½çš„æ•°æ®å…³è”事件ä¸çš„ç›®æ ‡æ ‡ç¾è¿›è¡Œè½¬æ¢ã€‚æ¤å¤–,进一æ¥è€ƒè™‘ç›®æ ‡æ ‡ç¾å‘é‡çš„分布。åŽéªŒå¯†åº¦è½¬æ¢åŽï¼Œå¯å¾—åˆ°ç›®æ ‡æ ‡ç¾å‘é‡çš„转移矩阵。该转移矩阵éšæ—¶é—´å˜åŒ–ï¼Œä½¿å¾—ç›®æ ‡æ ‡ç¾å‘é‡åˆ†å¸ƒçš„ä¼ æ’éµå¾ªéžé½æ¬¡é©¬å°”å¯å¤«é“¾ã€‚è¯æ˜Žäº†è¯¥é“¾æœ¬è´¨ä¸Šæ˜¯åŒéšæœºçš„,并推导了相应定ç†ã€‚通过举例和仿真,验è¯äº†æ‰€æ方法的有效性。本文结果å¯æŽ¨å¹¿åˆ°ç›¸åŒéšæœºæœ‰é™é›†æ¡†æž¶ä¸‹çš„其他数æ®å…³è”方法。
关键è¯ç»„:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/FITEE.2000209
CLC number:
TN713
Download Full Text:
Downloaded:
5384
Download summary:
<Click Here>Downloaded:
1708Clicked:
5837
Cited:
0
On-line Access:
2024-08-27
Received:
2023-10-17
Revision Accepted:
2024-05-08
Crosschecked:
2021-07-14