|
Frontiers of Information Technology & Electronic Engineering
ISSN 2095-9184 (print), ISSN 2095-9230 (online)
2021 Vol.22 No.9 P.1194-1206
Associative affinity network learning for multi-object tracking
Abstract: We propose a joint feature and metric learning deep neural network architecture, called the associative affinity network (AAN), as an affinity model for multi-object tracking (MOT) in videos. The AAN learns the associative affinity between tracks and detections across frames in an end-to-end manner. Considering flawed detections, the AAN jointly learns bounding box regression, classification, and affinity regression via the proposed multi-task loss. Contrary to networks that are trained with ranking loss, we directly train a binary classifier to learn the associative affinity of each track-detection pair and use a matching cardinality loss to capture information among candidate pairs. The AAN learns a discriminative affinity model for data association to tackle MOT, and can also perform single-object tracking. Based on the AAN, we propose a simple multi-object tracker that achieves competitive performance on the public MOT16 and MOT17 test datasets.
Key words: Multi-object tracking, Deep neural network, Affinity learning
杭州海康威视数字技术股份有限公司,中国杭州市,310000
摘要:为解决视频多目标跟踪问题,提出一种特征和度量联合学习的深度神经网络架构,称为关联相似度网络。关联相似度网络以端到端的方式学习跟踪轨迹和检测结果之间的关联相似度。针对有缺陷的检测结果,关联相似度网络同时学习矩形框回归、目标分类和相似度回归3个任务。不同于现有基于对比排序思想的方法,我们直接训练一个二分类器来学习跟踪轨迹与检测结果的关联相似度,同时设计了损失函数来约束匹配集合元素的个数。得益于上述设计,关联相似度网络不仅能够解决多目标跟踪问题中的匹配问题,还可以进行单目标跟踪。基于提出的关联相似度网络,设计了一个简单的多目标跟踪算法,在MOT16和MOT17测试集上的实验结果表明其有效性。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/FITEE.2000272
CLC number:
TP391
Download Full Text:
Downloaded:
4693
Download summary:
<Click Here>Downloaded:
1635Clicked:
6620
Cited:
0
On-line Access:
2024-08-27
Received:
2023-10-17
Revision Accepted:
2024-05-08
Crosschecked:
2021-07-22