|
Frontiers of Information Technology & Electronic Engineering
ISSN 2095-9184 (print), ISSN 2095-9230 (online)
2022 Vol.23 No.1 P.101-112
EDVAM: a 3D eye-tracking dataset for visual attention modeling in a virtual museum
Abstract: Predicting visual attention facilitates an adaptive virtual museum environment and provides a context-aware and interactive user experience. Explorations toward development of a visual attention mechanism using eye-tracking data have so far been limited to 2D cases, and researchers are yet to approach this topic in a 3D virtual environment and from a spatiotemporal perspective. We present the first 3D Eye-tracking Dataset for Visual Attention modeling in a virtual Museum, known as the EDVAM. In addition, a deep learning model is devised and tested with the EDVAM to predict a user's subsequent visual attention from previous eye movements. This work provides a reference for visual attention modeling and context-aware interaction in the context of virtual museums.
Key words: Visual attention; Virtual museums; Eye-tracking datasets; Gaze detection; Deep learning
1杜伦大学计算机科学学院,英国杜伦市,DH1 3LE
2乐卓博大学计算机科学与信息技术学院,澳大利亚维多利亚州,3086
3阿里巴巴集团,中国杭州市,311121
4浙江大学数字媒体系,中国杭州市,310027
5浙江大学国际设计研究院,中国杭州市,310058
摘要:视觉注意预测能帮助建立适应性虚拟博物馆环境,提供上下文感知和交互式用户体验。目前,利用眼动数据探究视觉注意机制的研究仍限于二维场景。研究者尚未能从时间和空间的角度出发,在三维虚拟场景里研究这一问题。为此,我们构建了第一个用于虚拟博物馆视觉注意建模的三维眼动数据集,命名为EDVAM。我们还建立了一个深度学习模型,通过历史眼动轨迹预测用户未来的视觉注意区域,用于测试EDVAM。这项研究能为虚拟博物馆的视觉注意建模和上下文感知交互提供参考。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/FITEE.2000318
CLC number:
Download Full Text:
Downloaded:
4970
Download summary:
<Click Here>Downloaded:
838Clicked:
7341
Cited:
0
On-line Access:
2024-08-27
Received:
2023-10-17
Revision Accepted:
2024-05-08
Crosschecked:
2021-02-15