Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

Cloud-assisted cognition adaptation for service robots in changing home environments

Abstract: Robots need more intelligence to complete cognitive tasks in home environments. In this paper, we present a new cloud-assisted cognition adaptation mechanism for home service robots, which learns new knowledge from other robots. In this mechanism, a change detection approach is implemented in the robot to detect changes in the user‘s home environment and trigger the adaptation procedure that adapts the robot‘s local customized model to the environmental changes, while the adaptation is achieved by transferring knowledge from the global cloud model to the local model through model fusion. First, three different model fusion methods are proposed to carry out the adaptation procedure, and two key factors of the fusion methods are emphasized. Second, the most suitable model fusion method and its settings for the cloud–robot knowledge transfer are determined. Third, we carry out a case study of learning in a changing home environment, and the experimental results verify the efficiency and effectiveness of our solutions. The experimental results lead us to propose an empirical guideline of model fusion for the cloud–robot knowledge transfer.

Key words: Home service robot; Cloud–robot knowledge transfer; Model fusion

Chinese Summary  <31> 面向变化用户家居环境的服务机器人云辅助认知适应

王祺1,樊臻1,盛卫华2,张森林1,刘妹琴1,3
1浙江大学电气工程学院,中国杭州市,310027
2俄克拉荷马州立大学电气与计算机工程学院,美国俄克拉荷马州斯蒂尔沃特,74078
3西安交通大学人工智能与机器人研究院,中国西安市,710049
摘要:机器人需要更强的智能以胜任家居环境中的认知任务。本文提出一种新的云辅助家居服务机器人认知适应机制,它可以从其他机器人处学习新知识。在该机制中,在机器人处部署一种变化检测方法以检测用户家居环境变化,并触发认知适应过程,实现经云端从其他机器人处学习新知识。而认知适应是通过模型融合方法将知识从云端全局模型迁移至机器人本地模型得以实现。首先,提出3种不同模型融合方法执行认知适应过程,并给出影响模型融合方法的两个关键因素。其次,确定最适合云端至机器人知识转移的模型融合方法及其设置。再次,在一个变化的用户家居环境中进行案例研究,,实验结果验证了所提方案的效率和有效性。基于实验结果,提出一种云端至机器人知识转移模型融合的经验准则。

关键词组:家居服务机器人;云端至机器人知识迁移;模型融合


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.2000431

CLC number:

TP242.6

Download Full Text:

Click Here

Downloaded:

7808

Download summary:

<Click Here> 

Downloaded:

594

Clicked:

6708

Cited:

0

On-line Access:

2024-08-27

Received:

2023-10-17

Revision Accepted:

2024-05-08

Crosschecked:

2021-01-10

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE