Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

Detection and localization of cyber attacks on water treatment systems: an entropy-based approach

Abstract: With the advent of Industry 4.0, water treatment systems (WTSs) are recognized as typical industrial cyber-physical systems (iCPSs) that are connected to the open Internet. Advanced information technology (IT) benefits the WTS in the aspects of reliability, efficiency, and economy. However, the vulnerabilities exposed in the communication and control infrastructure on the cyber side make WTSs prone to cyber attacks. The traditional IT system oriented defense mechanisms cannot be directly applied in safety-critical WTSs because the availability and real-time requirements are of great importance. In this paper, we propose an entropy-based intrusion detection (EBID) method to thwart cyber attacks against widely used controllers (e.g., programmable logic controllers) in WTSs to address this issue. Because of the varied WTS operating conditions, there is a high false-positive rate with a static threshold for detection. Therefore, we propose a dynamic threshold adjustment mechanism to improve the performance of EBID. To validate the performance of the proposed approaches, we built a high-fidelity WTS testbed with more than 50 measurement points. We conducted experiments under two attack scenarios with a total of 36 attacks, showing that the proposed methods achieved a detection rate of 97.22% and a false alarm rate of 1.67%.

Key words: Industrial cyber-physical system; Water treatment system; Intrusion detection; Abnormal state; Detection and localization; Information theory

Chinese Summary  <23> 水处理系统网络攻击的检测和定位:基于熵的方法

刘可1,汪慕峰2,麻荣宽1,张镇勇2,魏强1
1数学工程与先进计算国家重点实验室,中国郑州市,450001
2浙江大学控制科学与工程学院,中国杭州市,310027
摘要:随着工业4.0的发展,水处理系统作为一种典型工业信息物理系统逐渐接入互联网。先进的信息技术使水处理系统在可靠性、效率和经济性方面受益。然而,网络和基础设施中潜在的漏洞使水处理系统很容易遭受网络攻击。由于水处理系统对于实时性和可用性的严苛要求,传统的面向信息系统的防御机制无法直接应用于水处理系统。本文提出一种基于熵的入侵检测方法来抵御针对系统中控制器(如可编程逻辑控制器)的攻击。由于水处理系统运行条件的变化,在模型采用静态阈值进行检测时会产生较高误报率。因此本文提出一种动态阈值调整机制来提高所提方法的检测性能。为验证所提方法,我们建立了一个包含超过50个测量点的高保真水处理系统测试平台。在两种攻击场景下进行实验,共涵盖了36次攻击。结果表明,所提方法能够实现97.22%的检测率和1.67%的误报率。

关键词组:工业信息物理系统;水处理系统;入侵检测;异常状态;检测和定位;信息论


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.2000546

CLC number:

TP316.4

Download Full Text:

Click Here

Downloaded:

7038

Download summary:

<Click Here> 

Downloaded:

318

Clicked:

6298

Cited:

0

On-line Access:

2022-04-20

Received:

2020-10-13

Revision Accepted:

2022-05-04

Crosschecked:

2021-01-21

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE