Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

Feature selection techniques for microarray datasets: a comprehensive review, taxonomy, and future directions

Abstract: For optimal results, retrieving a relevant feature from a microarray dataset has become a hot topic for researchers involved in the study of feature selection (FS) techniques. The aim of this review is to provide a thorough description of various, recent FS techniques. This review also focuses on the techniques proposed for microarray datasets to work on multiclass classification problems and on different ways to enhance the performance of learning algorithms. We attempt to understand and resolve the imbalance problem of datasets to substantiate the work of researchers working on microarray datasets. An analysis of the literature paves the way for comprehending and highlighting the multitude of challenges and issues in finding the optimal feature subset using various FS techniques. A case study is provided to demonstrate the process of implementation, in which three microarray cancer datasets are used to evaluate the classification accuracy and convergence ability of several wrappers and hybrid algorithms to identify the optimal feature subset.

Key words: Feature selection; High dimensionality; Learning techniques; Microarray dataset

Chinese Summary  <26> 微阵列数据集的特征选择技术:综合评述、分类和未来方向

Kulanthaivel BALAKRISHNAN, Ramasamy DHANALAKSHMI
印度信息技术学院计算科学与工程系,印度蒂鲁吉拉伯利市,620012
摘要:为获得最佳结果,从微阵列数据集中检索相关特征已成为特征选择(FS)技术的研究热点。本综述旨在全面阐述各种最新特征选择技术,同时介绍了基于微阵列数据集的处理多类分类问题的技术以及提高学习算法性能的不同方法。我们试图理解和解决数据集不平衡问题,以证实研究人员在微阵列数据集上的工作。对文献的分析为理解和强调在通过各种特征选择技术寻找最佳特征子集时存在的众多挑战和问题铺平了道路。同时提供了一个案例说明该方法的实施过程,该方法使用3个微阵列癌症数据集评估一些包装方法和混合方法的分类精度和收敛能力,以确认最优特征子集。

关键词组:特征选择;高维;学习技术;微阵列数据集


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.2100569

CLC number:

TP391

Download Full Text:

Click Here

Downloaded:

6676

Clicked:

2623

Cited:

0

On-line Access:

2024-08-27

Received:

2023-10-17

Revision Accepted:

2024-05-08

Crosschecked:

2022-10-24

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE