Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

On the principles of Parsimony and Self-consistency for the emergence of intelligence

Abstract: Ten years into the revival of deep networks and artificial intelligence, we propose a theoretical framework that sheds light on understanding deep networks within a bigger picture of intelligence in general. We introduce two fundamental principles, Parsimony and Self-consistency, which address two fundamental questions regarding intelligence: what to learn and how to learn, respectively. We believe the two principles serve as the cornerstone for the emergence of intelligence, artificial or natural. While they have rich classical roots, we argue that they can be stated anew in entirely measurable and computable ways. More specifically, the two principles lead to an effective and efficient computational framework, compressive closed-loop transcription, which unifies and explains the evolution of modern deep networks and most practices of artificial intelligence. While we use mainly visual data modeling as an example, we believe the two principles will unify understanding of broad families of autonomous intelligent systems and provide a framework for understanding the brain.

Key words: Intelligence; Parsimony; Self-consistency; Rate reduction; Deep networks; Closed-loop transcription

Chinese Summary  <34> 土方开挖过程中钻进效率预测的Stacking集成学习模型

作者:吕菲,余佳,张君,俞澎,佟大威,吴斌平
机构:天津大学,水利工程仿真与安全国家重点实验室,中国天津,300350
目的:对钻进效率进行精确预测是制定土方开挖进度计划的关键。但现有预测方法多采用单个机器学习模型,存在参数敏感性和过拟合等问题,且往往忽略了环境因素和人员操作因素的影响。针对这些问题,本文提出一种同时考虑多种因素综合影响的新的集成学习预测方法。
创新点:1.建立一种基于Stacking集成学习的钻进效率预测模型;2.定量地考虑地质特性、人员操作、环境和机械特性等多种因素的综合影响;3.提出一种基于自适应步长策略的改进布谷鸟搜索优化方法,优化模型关键参数。
方法:1.通过多次对比实验,最终选择极值梯度提升(XGBoost)、随机森林(RF)和反向传播神经网络(BPNN)三个模型作为基学习器,支持向量回归(SVR)作为元学习器进行集成。2.建立基于自适应步长策略的改进布谷鸟搜索优化算法,对集成模型的Max_depth等超参数进行优化。3.将钻进效率值及相关影响因素的样本数据输入到每个基学习器中,得到相应的输出结果,再将预测结果作为元学习器的输入值,得到最终的预测结果。4.以中国西南地区某土石方工程为例,通过五折交叉验证方法,验证模型的鲁棒性,并采用五个常用评价指标评价模型的精度和泛化性能。
结论:工程应用结果表明,相比于目前流行的单个机器学习方法中预测性能最好的XGBoost和基于粒子群算法优化的Stacking集成模型,本文所提方法的平均绝对百分比误差(MAPE)分别提高了16.43%和4.88%。

关键词组:钻进效率;预测;土方开挖;Stacking集成学习;改进的布谷鸟搜索算法


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.2200297

CLC number:

TP18

Download Full Text:

Click Here

Downloaded:

10730

Clicked:

3389

Cited:

0

On-line Access:

2024-08-27

Received:

2023-10-17

Revision Accepted:

2024-05-08

Crosschecked:

2022-07-24

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE