Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

Image-based traffic signal control via world models

Abstract: Traffic signal control is shifting from passive control to proactive control, which enables the controller to direct current traffic flow to reach its expected destinations. To this end, an effective prediction model is needed for signal controllers. What to predict, how to predict, and how to leverage the prediction for control policy optimization are critical problems for proactive traffic signal control. In this paper, we use an image that contains vehicle positions to describe intersection traffic states. Then, inspired by a model-based reinforcement learning method, DreamerV2, we introduce a novel learning-based traffic world model. The traffic world model that describes traffic dynamics in image form is used as an abstract alternative to the traffic environment to generate multi-step planning data for control policy optimization. In the execution phase, the optimized traffic controller directly outputs actions in real time based on abstract representations of traffic states, and the world model can also predict the impact of different control behaviors on future traffic conditions. Experimental results indicate that the traffic world model enables the optimized real-time control policy to outperform common baselines, and the model achieves accurate image-based prediction, showing promising applications in futuristic traffic signal control.

Key words: Traffic signal control; Traffic prediction; Traffic world model; Reinforcement learning

Chinese Summary  <35> 基于世界模型与图像表示的交通信号控制

戴星原1,2,赵宸1,2,王晓3,吕宜生1,2,林懿伦4,王飞跃1,2
1中国科学院自动化研究所复杂系统管理与控制国家重点实验室,中国北京市,100190
2中国科学院大学人工智能学院,中国北京市,100049
3安徽大学人工智能学院,中国合肥市,230039
4上海人工智能实验室,中国上海市,200232
摘要:交通信号控制正从被动控制过渡到主动控制,以引导当前交通流按预期状态运行。一个有效的预测模型对主动交通信号控制至关重要;其中预测什么交通状态,如何高精度预测,以及如何利用预测优化控制策略是主动交通信号控制研究的关键问题。本文使用车辆位置图像描述路口交通状态,同时受基于模型的强化学习方法DreamerV2的启发,引入基于学习的交通世界模型。该世界模型以图像序列描述交通动态,并作为交通环境的抽象替代以生成多步预测样本用于控制策略优化。在执行阶段,优化后的交通信号控制器根据交通状态的抽象表示直接实时输出控制指令,同时世界模型能够预测不同控制行为对未来交通状态的影响。实验结果表明,基于交通世界模型优化的控制策略的性能优于一般基准,并且世界模型实现了基于图像的高精度预测;这些结果显示了世界模型在未来交通信号控制中的应用前景。

关键词组:交通信号控制;交通预测;交通世界模型;强化学习


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.2200323

CLC number:

U491; TP181

Download Full Text:

Click Here

Downloaded:

4955

Clicked:

2190

Cited:

0

On-line Access:

2024-08-27

Received:

2023-10-17

Revision Accepted:

2024-05-08

Crosschecked:

2022-10-06

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE