|
Frontiers of Information Technology & Electronic Engineering
ISSN 2095-9184 (print), ISSN 2095-9230 (online)
2023 Vol.24 No.10 P.1445-1457
RFPose-OT: RF-based 3D human pose estimation via optimal transport theory
Abstract: This paper introduces a novel framework, i.e., RFPose-OT, to enable three-dimensional (3D) human pose estimation from radio frequency (RF) signals. Different from existing methods that predict human poses from RF signals at the signal level directly, we consider the structure difference between the RF signals and the human poses, propose a transformation of the RF signals to the pose domain at the feature level based on the optimal transport (OT) theory, and generate human poses from the transformed features. To evaluate RFPose-OT, we build a radio system and a multi-view camera system to acquire the RF signal data and the ground-truth human poses. The experimental results in a basic indoor environment, an occlusion indoor environment, and an outdoor environment demonstrate that RFPose-OT can predict 3D human poses with higher precision than state-of-the-art methods.
Key words: Radio frequency sensing; Human pose estimation; Optimal transport; Deep learning
1电子科技大学信息与通信工程学院,中国成都市,611731
2中国科学技术大学网络空间安全学院,中国合肥市,230026
3中国科学技术大学信息科学技术学院,中国合肥市,230026
摘要:本文提出一个新颖的RFPose-OT模型框架以实现从无线射频信号中估计三维人体姿态。与现有直接从射频信号中预测人体姿态方法不同,本文考虑射频信号与人体姿态之间的结构特征差异,提出基于最优传输理论在特征空间上将射频信号变换到人体姿态域,再根据变换后的特征预测人体姿态。为评估RFPose-OT模型,本文构建了一个无线电系统和一个多视角相机系统获取无线信号数据以及真实的人体姿态标签。在室内基本环境、室内遮挡环境以及室外环境中的实验结果表明,RFPose-OT模型能精确地估计三维人体姿态,优于现有方法。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/FITEE.2200550
CLC number:
TP391.4
Download Full Text:
Downloaded:
3141
Download summary:
<Click Here>Downloaded:
349Clicked:
1745
Cited:
0
On-line Access:
2024-08-27
Received:
2023-10-17
Revision Accepted:
2024-05-08
Crosschecked:
2023-06-15