|
Frontiers of Information Technology & Electronic Engineering
ISSN 2095-9184 (print), ISSN 2095-9230 (online)
2024 Vol.25 No.5 P.664-684
A cloud-edge-device collaborative offloading scheme with heterogeneous tasks and its performance evaluation
Abstract: How to collaboratively offload tasks between user devices, edge networks (ENs), and cloud data centers is an interesting and challenging research topic. In this paper, we investigate the offloading decision, analytical modeling, and system parameter optimization problem in a collaborative cloud-edge-device environment, aiming to trade off different performance measures. According to the differentiated delay requirements of tasks, we classify the tasks into delay-sensitive and delay-tolerant tasks. To meet the delay requirements of delay-sensitive tasks and process as many delay-tolerant tasks as possible, we propose a cloud-edge-device collaborative task offloading scheme, in which delay-sensitive and delay-tolerant tasks follow the access threshold policy and the loss policy, respectively. We establish a four-dimensional continuous-time Markov chain as the system model. By using the Gauss-Seidel method, we derive the stationary probability distribution of the system model. Accordingly, we present the blocking rate of delay-sensitive tasks and the average delay of these two types of tasks. Numerical experiments are conducted and analyzed to evaluate the system performance, and numerical simulations are presented to evaluate and validate the effectiveness of the proposed task offloading scheme. Finally, we optimize the access threshold in the EN buffer to obtain the minimum system cost with different proportions of delay-sensitive tasks.
Key words: Edge computing; Offloading scheme; Cloud-edge-device collaboration; Markov chain; Cost function
机构:1浙江大学,交叉力学中心,中国杭州,310027;2浙江大学,杭州国际科创中心,中国杭州,311200;3浙江大学,流体动力与机电系统国家重点实验室,中国杭州,310058;4浙江大学,应用力学研究所,中国杭州,310027
目的:控制四足机器人实现连续、可控的多种运动。
创新点:1.将动作生成与基于动作模仿的强化学习方法结合,使用同一个控制器,跟踪不同运动学轨迹,在实物机器人上实现步态切换、高抬腿和跳跃等不同动作。2.提出参考轨迹可预测性的概念,强化学习控制器具备挖掘参考轨迹内在关联性的能力,揭示动作模仿中控制器输入的参考轨迹长度对控制器性能的影响机理。
方法:1.通过动作捕获、草绘与轨迹优化等方法,建立运动轨迹数据库。2.通过基于动作模仿的强化方法,在仿真环境中训练控制器模仿数据库中的动作。3.基于控制器设计动作状态机,根据用户指令实时生成可控的运动轨迹,作为控制器的输入,实现对实物机器人的控制。4.提出参考轨迹可预测性的概念,分析参考轨迹长度对控制器性能的影响。
结论:1.本文所提出的控制方法可以在实物机器人上实现对多种技能的控制。2.参考轨迹长度对控制器性能的影响是通过可预测性实现的;对于可预测性低的运动,可以通过补充参考轨迹长度提高控制器性能。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/FITEE.2300128
CLC number:
TP393
Download Full Text:
Downloaded:
1749
Download summary:
<Click Here>Downloaded:
369Clicked:
1389
Cited:
0
On-line Access:
2024-08-27
Received:
2023-10-17
Revision Accepted:
2024-05-08
Crosschecked:
2023-08-06