Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

Hybrid-driven Gaussian process online learning for highly maneuvering multi-target tracking

Abstract: The performance of existing maneuvering target tracking methods for highly maneuvering targets in cluttered environments is unsatisfactory. This paper proposes a hybrid-driven approach for tracking multiple highly maneuvering targets, leveraging the advantages of both data-driven and model-based algorithms. The time-varying constant velocity model is integrated into the Gaussian process (GP) of online learning to improve the performance of GP prediction. This integration is further combined with a generalized probabilistic data association algorithm to realize multi-target tracking. Through the simulations, it has been demonstrated that the hybrid-driven approach exhibits significant performance improvements in comparison with widely used algorithms such as the interactive multi-model method and the data-driven GP motion tracker.

Key words: Target tracking; Gaussian process; Data-driven; Online learning; Model-driven; Probabilistic data association

Chinese Summary  <23> 基于混合驱动高斯过程学习的强机动多目标跟踪方法

国强1,滕龙1,2,尹天祥3,郭云飞3,吴新良2,宋文明2
1哈尔滨工程大学信息与通信工程学院,中国哈尔滨市,150001
2中国航空无线电电子研究所,中国上海市,200233
3杭州电子科技大学自动化学院,中国杭州市,310018
摘要:现有机动目标跟踪方法在杂波环境中强机动目标的跟踪性能并不令人满意。本文提出一种混合驱动方法,利用数据驱动和基于模型算法的优点跟踪多个高机动目标。将时变恒速(CV)模型集成到在线学习的高斯过程(GP)中,提高高斯过程的预测性能。进一步与广义概率数据关联(GPDA)算法相结合,实现多目标跟踪。通过仿真实验可知,与广泛使用的机动目标跟踪算法如交互式多模型(IMM)和数据驱动的高斯过程运动跟踪器(GPMT)相比,提出的混合驱动方法具有显著的性能优势。

关键词组:目标跟踪;高斯过程;数据驱动;在线学习;模型驱动;概率数据关联


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.2300348

CLC number:

TN953

Download Full Text:

Click Here

Downloaded:

6026

Download summary:

<Click Here> 

Downloaded:

381

Clicked:

1758

Cited:

0

On-line Access:

2024-08-27

Received:

2023-10-17

Revision Accepted:

2024-05-08

Crosschecked:

2023-10-04

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE