Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

Camouflaged target detection based on multimodal image input pixel-level fusion

Abstract: Camouflaged targets are a type of nonsalient target with high foreground and background fusion and minimal target feature information, making target recognition extremely difficult. Most detection algorithms for camouflaged targets use only the target’s single-band information, resulting in low detection accuracy and a high missed detection rate. We present a multimodal image fusion camouflaged target detection technique (MIF-YOLOv5) in this paper. First, we provide a multimodal image input to achieve pixel-level fusion of the camouflaged target’s optical and infrared images to improve the effective feature information of the camouflaged target. Second, a loss function is created, and the K-Means++ clustering technique is used to optimize the target anchor frame in the dataset to increase camouflage personnel detection accuracy and robustness. Finally, a comprehensive detection index of camouflaged targets is proposed to compare the overall effectiveness of various approaches. More crucially, we create a multispectral camouflage target dataset to test the suggested technique. Experimental results show that the proposed method has the best comprehensive detection performance, with a detection accuracy of 96.5%, a recognition probability of 92.5%, a parameter number increase of 1×104, a theoretical calculation amount increase of 0.03 GFLOPs, and a comprehensive detection index of 0.85. The advantage of this method in terms of detection accuracy is also apparent in performance comparisons with other target algorithms.

Key words: Camouflaged target detection; Pixel-level fusion; Anchor box optimization; Loss function; Multispectral dataset

Chinese Summary  <13> 基于多模态图像输入端像素级融合的伪装目标检测

彭锐晖1,2,赖杰1,杨雪婷1,孙殿星1,3,谭顺成3,宋颖娟1,郭伟1
1哈尔滨工程大学青岛创新发展基地,中国青岛市,266000
2哈尔滨工程大学信息与通信工程学院,中国哈尔滨市,150001
3海军航空大学信息融合研究所,中国烟台市,264001
摘要:伪装目标是一种前景和背景高度融合、目标特征信息极少的非显著目标,给目标识别带来极大困难。大多数伪装目标检测算法仅使用目标的单波段信息,导致检测精度低、漏检率高。本文提出一种多模态图像融合伪装目标检测技术(MIF-YOLOv5)。首先,通过多模态图像输入端实现伪装目标的光学和红外图像的像素级融合,增强伪装目标的有效特征信息。其次,创建损失函数,并利用K-Means++聚类算法优化数据集中的目标锚框,提高伪装人员的检测精度和算法鲁棒性。最后,提出伪装目标的综合检测指标,以比较各种方法的综合检测效果。更重要的是,创建了一个多光谱伪装目标数据集来测试所提技术。实验结果表明,所提方法综合检测性能最佳,其检测精度为96.5%,识别概率为92.5%,模型参数增加1×104,理论计算量增加0.03 GFLOPs,伪装目标综合检测指数为0.85。与其他目标算法相比,该方法在检测精度上的优势显而易见。

关键词组:伪装目标检测;像素级融合;锚框优化;损失函数;多光谱数据集


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.2300503

CLC number:

TP391

Download Full Text:

Click Here

Downloaded:

870

Download summary:

<Click Here> 

Downloaded:

130

Clicked:

1441

Cited:

0

On-line Access:

2024-08-27

Received:

2023-10-17

Revision Accepted:

2024-05-08

Crosschecked:

2024-09-29

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE