Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

SRIS-Net: a robust image steganography algorithm based on feature score maps

Abstract: Image steganography algorithms based on deep learning are often trained using either spatial- or frequency-domain features. It is difficult for features from a single domain to comprehensively express the content of an entire image, which usually leads to poor performance because steganography is commonly multi-task. To solve this problem, this paper proposes a robust image steganography algorithm based on feature score maps, called the secure and robust image steganography network (SRIS-Net). First, instead of spatial-domain steganography, our proposed algorithm utilizes a convolutional neural network to obtain shallow spatial-domain features. These features are decomposed by Laplacian pyramid frequency-domain decomposition (LPFDD) to hide secret information in the different frequency sub-bands with a progressive assisted hiding strategy that significantly reduces the influence of the secret information on the cover image, achieving significant invisibility and robust performance. In addition, we propose a global–local embedding module (GLEM) to achieve embedding by considering the overall structure of the image and the local details, and a dual multi-scale aggregation sub-network (DMSubNet) to perform multi-scale reconstruction to improve the quality of the carrier image. For security, we propose a dual-task discriminator structure, while giving a real/fake judgment of the image, which can generate a feature score map of the cover image’s region of interest (ROI) to guide the embedding module to generate a carrier image with higher imperceptibility and undetectability. Experimental results on BOSSBase show that our SRIS-Net outperforms mainstream methods in terms of undetectability and robustness, with more than 9.2 and 3.4 dB improvement in visual quality, respectively, and the capacity can be increased up to approximately 72–96 bits per pixel.

Key words: Image steganography; Robustness; Undetectability; Dual-task discriminator

Chinese Summary  <4> SRIS-Net:基于特征评分图的鲁棒图像隐写算法

肖爱,李智,王国美,郑龙,孙浩元
贵州大学计算机科学与技术学院,中国贵阳市,550025
摘要:基于深度学习的图像隐写算法通常使用空间域或频域特征进行训练。但单一域的特征很难完全表达整个图像的内容,而隐写通常是多任务的,这通常导致隐写性能不佳。为此,本文提出一种基于特征评分图的鲁棒图像隐写算法,称为"安全和鲁棒图像隐写网络"(SRIS-Net)。首先,所提算法不是使用空间域隐写,而是利用卷积神经网络获得浅层空间域特征。这些特征通过拉普拉斯金字塔频域分解(LPFDD),以渐进辅助隐藏策略在不同频率子带中隐藏秘密信息,从而显著减少秘密信息对覆盖图像的影响,有效实现显著的不可见性和鲁棒性能。此外,提出一个全局-局部嵌入模块(GLEM),该模块通过考虑图像的整体结构和局部细节来实现嵌入,并提出一个双多尺度聚合子网络(DMSubNet)进行多尺度重构以提高载体图像的质量。为了确保安全性,提出一个双任务鉴别器结构,同时对图像进行真或假的判断,并生成载体图像感兴趣区域(ROI)的特征评分图,以指导嵌入模块生成具有更高隐蔽性和不可检测性的载密图像。在BOSSBase上的实验结果表明,所提出的SRIS-Net在不可检测性和鲁棒性方面优于其他主流方法,在视觉质量上分别提高超过9.2 dB和3.4 dB,容量可以增加到大约72-96 bpp。

关键词组:图像隐写;鲁棒性;不可检测性;双任务鉴别器


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.2400069

CLC number:

TP309

Download Full Text:

Click Here

Downloaded:

2853

Download summary:

<Click Here> 

Downloaded:

383

Clicked:

1646

Cited:

0

On-line Access:

2025-07-02

Received:

2024-01-29

Revision Accepted:

2025-07-02

Crosschecked:

2024-06-24

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE