|
Frontiers of Information Technology & Electronic Engineering
ISSN 2095-9184 (print), ISSN 2095-9230 (online)
2025 Vol.26 No.2 P.214-229
Incentive-based task offloading for digital twins in 6G native artificial intelligence networks: a learning approach
Abstract: A communication network can natively provide artificial intelligence (AI) training services for resource-limited network entities to quickly build accurate digital twins and achieve high-level network autonomy. Considering that network entities that require digital twins and those that provide AI services may belong to different operators, incentive mechanisms are needed to maximize the utility of both. In this paper, we establish a Stackelberg game to model AI training task offloading for digital twins in native AI networks with the operator with base stations as the leader and resource-limited network entities as the followers. We analyze the Stackelberg equilibrium to obtain equilibrium solutions. Considering the time-varying wireless network environment, we further design a deep reinforcement learning algorithm to achieve dynamic pricing and task offloading. Finally, extensive simulations are conducted to verify the effectiveness of our proposal.
Key words: Digital twin network; Native artificial intelligence; Stackelberg game; Task offloading; Deep reinforcement learning
1中国移动通信有限公司研究院,中国北京市,100053
2中关村泛联移动通信技术创新研究院,中国北京市,100080
3中国移动通信集团有限公司,中国北京市,100032
4北京邮电大学信息与通信工程学院,中国北京市,100876
摘要:通信网络可以内生地为资源有限的网络实体提供人工智能(AI)训练服务,以快速构建精准的数字孪生并实现高水平的网络自治。考虑到需要数字孪生的网络实体和提供AI服务的网络实体可能属于不同的运营商,可采用激励机制来最大化两者的效用。本文建立了一个斯坦伯格博弈来对内生AI网络中数字孪生的AI训练任务卸载进行建模,其中基站运营商为领导者,资源有限的网络实体为跟随者。本文对斯坦伯格均衡进行分析以获得均衡解,同时考虑到时变的无线网络环境,进一步设计了一种深度强化学习算法来实现动态定价和任务卸载。最后,通过大量仿真实验验证所提方案的有效性。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/FITEE.2400240
CLC number:
TN929.5
Download Full Text:
Downloaded:
452
Clicked:
830
Cited:
0
On-line Access:
2025-03-07
Received:
2024-03-30
Revision Accepted:
2024-07-25
Crosschecked:
2025-03-07