|
Frontiers of Information Technology & Electronic Engineering
ISSN 2095-9184 (print), ISSN 2095-9230 (online)
2024 Vol.25 No.11 P.1565-1574
A V-band high-linearity BiCMOS mixer with robust temperature tolerance
Abstract: A high-linearity down mixer with outstanding robust temperature tolerance for V-band applications is proposed in this paper. The mixer’s temperature robustness has been greatly enhanced by employing a negative temperature-compensation circuit (NTC) and a positive temperature-compensation circuit (PTC) in the transconductance (gm) stage and intermediate frequency (IF) output buffer, respectively. Benefiting from the active balun with enhanced gm and emitter negative feedback technique, the linearity of the mixer has been significantly improved. For verification, a double-balanced V-band mixer is designed and implemented in a 130 nm SiGe BiCMOS process. Measured over the local oscillator (LO) bandwidth from 57 GHz to 63 GHz, the mixer demonstrates a peak conversion gain (CG) of −0.5 dB, a minimal noise figure (NF) of 11.5 dB, and an input 1 dB compression point (IP1 dB) of 4.8 dBm under an LO power of −3 dBm. Furthermore, the measurements of CG, NF, and IP1 dB exhibit commendable consistency within the temperature range of −55 °C to 85 °C, with fluctuations of less than 0.8 dB, 1 dB, and 1.2 dBm, respectively. From 57 GHz to 63 GHz, the measured LO-to-radio frequency (RF) isolation is better than 46 dB, the measured return loss at the RF port is >29 dB, and at the LO port it exceeds 12 dB. With a 2.5 V supply voltage, the mixer power consumption is 15.75 mW, 18.5 mW, and 21 mW at temperatures of −55 °C, 25 °C, and 85 °C, respectively. Moreover, the mixer chip occupies a total silicon area of 0.56 mm2 including all testing pads.
Key words: V-band; Down-conversion mixer; SiGe BiCMOS; Temperature compensation; High-linearity; Active balun
1杭州电子科技大学电子信息学院,中国杭州市,310018
2东南大学毫米波国家重点实验室,中国南京市,210096
3北京无线电测量研究所,中国北京市,100854
摘要:本文提出一种高线性度且具有优异温度鲁棒性的V波段下变频混频器。通过在跨导(gm)级和中频(IF)输出缓冲器中分别采用负温度补偿电路(NTC)和正温度补偿电路(PTC),极大增强了混频器的温度耐受性。得益于采用跨导增强的有源巴伦和发射极负反馈技术,混频器的线性度得到了显著改善。为验证效果,基于130纳米SiGe BiCMOS工艺流片制造了一个V波段双平衡下变频混频器。测试结果表明,本地振荡器(LO)在57GHz至63 GHz的频率范围内且注入功率为−3 dBm时,混频器的峰值转换增益(CG)为−0.5 dB,最小噪声系数(NF)为11.5 dB,输入1 dB压缩点(IP1 dB)为4.8 dBm。进一步地,在−55 °C至85 °C的温度范围内,CG、NF和IP1 dB的测量结果具有良好的一致性,它们的波动分别小于0.8 dB、1 dB和1.2 dBm。在57GHz至63 GHz范围内,LO端口至频射(RF)端口测量的隔离度优于46 dB,RF端口测量的回波损耗大于29 dB,LO端口测量的回波损耗超过12 dB。在2.5 V电源电压下,混频器在−55 ℃、25 ℃和85 ℃温度下的功耗分别为15.75 mW、18.5 mW和21 mW。此外,混频器芯片包括所有测试焊盘在内的硅片总面积为0.56 mm2。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/FITEE.2400378
CLC number:
TN433
Download Full Text:
Downloaded:
418
Download summary:
<Click Here>Downloaded:
41Clicked:
926
Cited:
0
On-line Access:
2024-12-26
Received:
2024-05-10
Revision Accepted:
2024-07-30
Crosschecked:
2024-12-26