|
Frontiers of Information Technology & Electronic Engineering
ISSN 2095-9184 (print), ISSN 2095-9230 (online)
2025 Vol.26 No.6 P.912-929
Prototype-guided cross-task knowledge distillation
Abstract: Recently, large-scale pretrained models have revealed their benefits in various tasks. However, due to the enormous computation complexity and storage demands, it is challenging to apply large-scale models to real scenarios. Existing knowledge distillation methods require mainly the teacher model and the student model to share the same label space, which restricts their application in real scenarios. To alleviate the constraint of different label spaces, we propose a prototype-guided cross-task knowledge distillation (ProC-KD) method to migrate the intrinsic local-level object knowledge of the teacher network to various task scenarios. First, to better learn the generalized knowledge in cross-task scenarios, we present a prototype learning module to learn the invariant intrinsic local representation of objects from the teacher network. Second, for diverse downstream tasks, a task-adaptive feature augmentation module is proposed to enhance the student network features with the learned generalization prototype representations and guide the learning of the student network to improve its generalization ability. Experimental results on various visual tasks demonstrate the effectiveness of our approach for cross-task knowledge distillation scenarios.
Key words: Knowledge distillation; Cross-task; Prototype learning
1天津大学智能与计算学部,中国天津市,300350
2嵩山实验室,中国郑州市,450000
3西安电子科技大学电子工程学院,中国西安市,710401
摘要:近年来,大规模预训练模型在各种任务中展现了其优势。然而,受繁重的计算和巨大的存储需求限制,大规模预训练模型难以部署于真实场景中。现有主流的知识蒸馏方法要求教师模型和学生模型共享相同的标签空间,这限制了预训练模型在真实场景的应用。为缓解不同标签空间的限制,本文提出一种原型引导的跨任务知识蒸馏(ProC-KD)方法,旨在将教师网络的本质物体表征知识迁移到各种下游任务场景中。首先,为更好地学习跨任务场景中的泛化知识,提出一个原型学习模块,从教师网络中学习物体的不变本质表示。其次,对于多样的下游任务,提出一个任务自适应特征增强模块,通过习得的泛化原型表示增强学生网络特征,并指导学生网络的学习以提高其泛化能力。在不同视觉任务上的实验验证了所提方法在跨任务知识蒸馏场景中的有效性。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/FITEE.2400383
CLC number:
TP391
Download Full Text:
Downloaded:
2378
Download summary:
<Click Here>Downloaded:
400Clicked:
847
Cited:
0
On-line Access:
2025-07-02
Received:
2024-05-12
Revision Accepted:
2025-07-02
Crosschecked:
2024-09-18